1 | """Example of shallow water wave equation. |
---|
2 | |
---|
3 | Specific methods pertaining to the 2D shallow water equation |
---|
4 | are imported from shallow_water |
---|
5 | for use with the generic finite volume framework |
---|
6 | |
---|
7 | Conserved quantities are h, uh and vh stored as elements 0, 1 and 2 in the |
---|
8 | numerical vector named conserved_quantities. |
---|
9 | """ |
---|
10 | |
---|
11 | #------------------------------------------------------------------------------ |
---|
12 | # Import necessary modules |
---|
13 | #------------------------------------------------------------------------------ |
---|
14 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
15 | from anuga.shallow_water import Domain |
---|
16 | from anuga.shallow_water.shallow_water_domain import Reflective_boundary |
---|
17 | from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary |
---|
18 | |
---|
19 | |
---|
20 | #------------------------------------------------------------------------------ |
---|
21 | # Setup computational domain |
---|
22 | #------------------------------------------------------------------------------ |
---|
23 | length = 40. |
---|
24 | width = 5. |
---|
25 | |
---|
26 | #dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
27 | #dx = dy = .5 # Resolution: Length of subdivisions on both axes |
---|
28 | dx = dy = .1 # Resolution: Length of subdivisions on both axes |
---|
29 | |
---|
30 | points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), |
---|
31 | len1=length, len2=width) |
---|
32 | domain = Domain(points, vertices, boundary) |
---|
33 | domain.set_name('culvert_example') # Output name |
---|
34 | print 'Size', len(domain) |
---|
35 | |
---|
36 | #------------------------------------------------------------------------------ |
---|
37 | # Setup initial conditions |
---|
38 | #------------------------------------------------------------------------------ |
---|
39 | |
---|
40 | def topography(x, y): |
---|
41 | """Set up a weir |
---|
42 | |
---|
43 | A culvert will connect either side |
---|
44 | """ |
---|
45 | |
---|
46 | z = -x/10 |
---|
47 | |
---|
48 | N = len(x) |
---|
49 | for i in range(N): |
---|
50 | |
---|
51 | # Weir from 10 to 12 m |
---|
52 | if 10 < x[i] < 12: |
---|
53 | z[i] += 0.4 - 0.05*y[i] |
---|
54 | |
---|
55 | # Constriction |
---|
56 | #if 27 < x[i] < 29 and y[i] > 3: |
---|
57 | # z[i] += 2 |
---|
58 | |
---|
59 | # Pole |
---|
60 | #if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2: |
---|
61 | # z[i] += 2 |
---|
62 | |
---|
63 | return z |
---|
64 | |
---|
65 | |
---|
66 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
67 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
68 | domain.set_quantity('stage', |
---|
69 | expression='elevation') # Dry initial condition |
---|
70 | |
---|
71 | |
---|
72 | |
---|
73 | |
---|
74 | #------------------------------------------------------------------------------ |
---|
75 | # Setup specialised forcing terms |
---|
76 | #------------------------------------------------------------------------------ |
---|
77 | |
---|
78 | class Inflow: |
---|
79 | """Class Inflow - general 'rain and drain' forcing term. |
---|
80 | |
---|
81 | Useful for implementing flows in and out of the domain. |
---|
82 | |
---|
83 | Inflow(center, radius, flow) |
---|
84 | |
---|
85 | center [m]: Coordinates at center of flow point |
---|
86 | radius [m]: Size of circular area |
---|
87 | flow [m/s]: Rate of change of quantity over the specified area. |
---|
88 | This parameter can be either a constant or a function of time. |
---|
89 | Positive values indicate inflow, |
---|
90 | negative values indicate outflow. |
---|
91 | |
---|
92 | Examples |
---|
93 | |
---|
94 | Inflow((0.7, 0.4), 0.07, -0.2) # Constant drain at 0.2 m/s. |
---|
95 | # This corresponds to a flow of |
---|
96 | # 0.07**2*pi*0.2 = 0.00314 m^3/s |
---|
97 | |
---|
98 | Inflow((0.5, 0.5), 0.001, lambda t: min(4*t, 5)) # Tap turning up to |
---|
99 | # a maximum inflow of |
---|
100 | # 5 m/s over the |
---|
101 | # specified area |
---|
102 | """ |
---|
103 | |
---|
104 | # FIXME (OLE): Add a polygon as an alternative. |
---|
105 | # FIXME (OLE): Generalise to all quantities |
---|
106 | # FIXME (OLE): |
---|
107 | |
---|
108 | def __init__(self, |
---|
109 | domain, |
---|
110 | center=None, radius=None, |
---|
111 | flow=0.0, |
---|
112 | quantity_name = 'stage'): |
---|
113 | |
---|
114 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
115 | |
---|
116 | if center is not None and radius is not None: |
---|
117 | assert len(center) == 2 |
---|
118 | else: |
---|
119 | msg = 'Both center and radius must be specified' |
---|
120 | raise Exception, msg |
---|
121 | |
---|
122 | self.domain = domain |
---|
123 | self.center = ensure_numeric(center) |
---|
124 | self.radius = radius |
---|
125 | self.flow = flow |
---|
126 | |
---|
127 | self.quantity = domain.quantities[quantity_name].explicit_update |
---|
128 | |
---|
129 | # Determine indices in flow area |
---|
130 | N = len(domain) |
---|
131 | self.indices = [] |
---|
132 | coordinates = domain.get_centroid_coordinates() |
---|
133 | for k in range(N): |
---|
134 | x, y = coordinates[k,:] # Centroid |
---|
135 | if ((x-center[0])**2+(y-center[1])**2) < radius**2: |
---|
136 | self.indices.append(k) |
---|
137 | |
---|
138 | |
---|
139 | def __call__(self, domain): |
---|
140 | |
---|
141 | # Update inflow |
---|
142 | if callable(self.flow): |
---|
143 | flow = self.flow(domain.get_time()) |
---|
144 | else: |
---|
145 | flow = self.flow |
---|
146 | |
---|
147 | for k in self.indices: |
---|
148 | self.quantity[k] += flow |
---|
149 | |
---|
150 | |
---|
151 | class Culvert_flow: |
---|
152 | """Culvert flow - transfer water from one hole to another |
---|
153 | """ |
---|
154 | |
---|
155 | def __init__(self, |
---|
156 | domain, |
---|
157 | center0=None, radius0=None, |
---|
158 | center1=None, radius1=None, |
---|
159 | transfer_flow=None): |
---|
160 | |
---|
161 | from Numeric import sqrt, sum |
---|
162 | |
---|
163 | self.openings = [] |
---|
164 | self.openings.append(Inflow(domain, |
---|
165 | center=center0, |
---|
166 | radius=radius0, |
---|
167 | flow=None)) |
---|
168 | |
---|
169 | self.openings.append(Inflow(domain, |
---|
170 | center=center1, |
---|
171 | radius=radius1, |
---|
172 | flow=None)) |
---|
173 | |
---|
174 | # Compute distance between opening centers. I assume there are only two. |
---|
175 | self.distance = sqrt(sum( (self.openings[0].center - self.openings[1].center)**2 )) |
---|
176 | print 'Distance between openings is', self.distance |
---|
177 | |
---|
178 | |
---|
179 | def __call__(self, domain): |
---|
180 | from anuga.utilities.numerical_tools import mean |
---|
181 | |
---|
182 | |
---|
183 | # Get average water depths at each opening |
---|
184 | for opening in self.openings: |
---|
185 | stage = domain.quantities['stage'].get_values(location='centroids', |
---|
186 | indices=opening.indices) |
---|
187 | elevation = domain.quantities['elevation'].get_values(location='centroids', |
---|
188 | indices=opening.indices) |
---|
189 | |
---|
190 | # Store current avg depth with opening object |
---|
191 | opening.depth = mean(stage-elevation) |
---|
192 | # print 'Depth', opening.depth |
---|
193 | |
---|
194 | |
---|
195 | # Here's a simple transfer function hardwired into this Culvert class: |
---|
196 | # Let flow rate depend on difference in depth |
---|
197 | # Flow is instantaneous for now but one might use |
---|
198 | # the precomputed distance between the two openings |
---|
199 | # to somehow introduce a delay. |
---|
200 | |
---|
201 | delta_h = self.openings[0].depth - self.openings[1].depth |
---|
202 | flow_rate = 0.5*9.81*delta_h**2 # Just an example of flow rate |
---|
203 | flow_rate /= (self.openings[0].radius + self.openings[1].radius)/2 # |
---|
204 | |
---|
205 | if delta_h > 0: |
---|
206 | # Opening 0 has the greatest depth. |
---|
207 | # Flow will go from opening 0 to opening 1 |
---|
208 | |
---|
209 | self.openings[0].flow = -flow_rate |
---|
210 | self.openings[1].flow = flow_rate |
---|
211 | else: |
---|
212 | # Opening 1 has the greatest depth. |
---|
213 | # Flow will go from opening 1 to opening 0 |
---|
214 | |
---|
215 | self.openings[0].flow = flow_rate |
---|
216 | self.openings[1].flow = -flow_rate |
---|
217 | |
---|
218 | |
---|
219 | # Execute flow term for each opening |
---|
220 | for opening in self.openings: |
---|
221 | opening(domain) |
---|
222 | |
---|
223 | |
---|
224 | |
---|
225 | #sink = Inflow(domain, center=[0.7, 0.4], radius=0.0707, flow = 0.0) |
---|
226 | #tap = Inflow(domain, center=(0.5, 0.5), radius=0.0316, |
---|
227 | # flow=lambda t: min(4*t, 5)) # Tap turning up |
---|
228 | #domain.forcing_terms.append(tap) |
---|
229 | #domain.forcing_terms.append(sink) |
---|
230 | |
---|
231 | culvert = Culvert_flow(domain, |
---|
232 | center0=[5.0, 2.5], radius0=0.3, |
---|
233 | center1=[20., 2.5], radius1=0.3, |
---|
234 | transfer_flow=None) # Hardwired for now |
---|
235 | |
---|
236 | domain.forcing_terms.append(culvert) |
---|
237 | |
---|
238 | #------------------------------------------------------------------------------ |
---|
239 | # Setup boundary conditions |
---|
240 | #------------------------------------------------------------------------------ |
---|
241 | Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow |
---|
242 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
243 | Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow |
---|
244 | |
---|
245 | domain.set_boundary({'left': Bi, 'right': Bo, 'top': Br, 'bottom': Br}) |
---|
246 | |
---|
247 | |
---|
248 | #------------------------------------------------------------------------------ |
---|
249 | # Evolve system through time |
---|
250 | #------------------------------------------------------------------------------ |
---|
251 | for t in domain.evolve(yieldstep = 0.01, finaltime = 15): |
---|
252 | domain.write_time() |
---|
253 | |
---|
254 | #if domain.get_time() >= 4 and tap.flow != 0.0: |
---|
255 | # print 'Turning tap off' |
---|
256 | # tap.flow = 0.0 |
---|
257 | |
---|
258 | #if domain.get_time() >= 3 and sink.flow < 0.0: |
---|
259 | # print 'Turning drain on' |
---|
260 | # sink.flow = -0.8 |
---|
261 | |
---|