[5162] | 1 | """Example of shallow water wave equation analytical solution |
---|
| 2 | consists of a symmetrical converging frictionless channel. |
---|
| 3 | |
---|
| 4 | Specific methods pertaining to the 2D shallow water equation |
---|
| 5 | are imported from shallow_water |
---|
| 6 | for use with the generic finite volume framework |
---|
| 7 | |
---|
| 8 | Copyright 2005 |
---|
| 9 | Christopher Zoppou, Stephen Roberts |
---|
| 10 | ANU |
---|
| 11 | |
---|
| 12 | Specific methods pertaining to the 2D shallow water equation |
---|
| 13 | are imported from shallow_water |
---|
| 14 | for use with the generic finite volume framework |
---|
| 15 | |
---|
| 16 | Conserved quantities are h, uh and vh stored as elements 0, 1 and 2 in the |
---|
| 17 | numerical vector named conserved_quantities. |
---|
| 18 | """ |
---|
| 19 | |
---|
| 20 | #--------------- |
---|
| 21 | # Module imports |
---|
| 22 | import sys |
---|
| 23 | from os import sep |
---|
| 24 | sys.path.append('..'+sep+'pyvolution') |
---|
| 25 | |
---|
| 26 | from shallow_water import Transmissive_boundary, Reflective_boundary, \ |
---|
| 27 | Dirichlet_boundary |
---|
| 28 | from shallow_water import Constant_height, Domain |
---|
| 29 | from pmesh2domain import pmesh_to_domain_instance |
---|
| 30 | from mesh_factory import contracting_channel_cross |
---|
| 31 | |
---|
| 32 | #------- |
---|
| 33 | # Domain from a file |
---|
| 34 | # filename = 'converging_channel_30846.tsh' |
---|
| 35 | # print 'Creating domain from', filename |
---|
| 36 | # domain = pmesh_to_domain_instance(filename, Domain) |
---|
| 37 | |
---|
| 38 | ###################### |
---|
| 39 | # Domain created within python |
---|
| 40 | # |
---|
| 41 | Total_length = 50 |
---|
| 42 | W_upstream = 5. |
---|
| 43 | W_downstream = 2.5 |
---|
| 44 | L_1 = 5. |
---|
| 45 | L_2 = 11 |
---|
| 46 | L_3 = Total_length - L_1 - L_2 |
---|
| 47 | n = 5 |
---|
| 48 | m = 50 |
---|
| 49 | |
---|
| 50 | points, elements, boundary = \ |
---|
| 51 | contracting_channel_cross(m, n, W_upstream, W_downstream, L_1, L_2, L_3) |
---|
| 52 | domain = Domain(points, elements, boundary) |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | print 'Number of triangles = ', len(domain) |
---|
| 56 | |
---|
| 57 | #---------------- |
---|
| 58 | # Order of scheme |
---|
| 59 | domain.default_order = 2 |
---|
| 60 | domain.smooth = True |
---|
| 61 | |
---|
| 62 | #------------------------------------- |
---|
| 63 | # Provide file name for storing output |
---|
| 64 | domain.store = True #Store for visualisation purposes |
---|
| 65 | domain.format = 'sww' #Native netcdf visualisation format |
---|
| 66 | domain.filename = 'contracting_channel_second-order' |
---|
| 67 | |
---|
| 68 | |
---|
| 69 | #---------------------------------------------------------- |
---|
| 70 | # Decide which quantities are to be stored at each timestep |
---|
| 71 | domain.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
| 72 | |
---|
| 73 | #------------------------------------------------ |
---|
| 74 | # This is for Visual Python |
---|
| 75 | domain.visualise = True |
---|
| 76 | |
---|
| 77 | #------------------------------------------ |
---|
| 78 | # Reduction operation for get_vertex_values |
---|
| 79 | #from anuga.pyvolution.util import mean |
---|
| 80 | #domain.reduction = mean |
---|
| 81 | |
---|
| 82 | #------------------------ |
---|
| 83 | # Set boundary Conditions |
---|
| 84 | tags = {} |
---|
| 85 | tags['left'] = Dirichlet_boundary([0.2, 1.2, 0.0]) |
---|
| 86 | tags['top'] = Reflective_boundary(domain) |
---|
| 87 | tags['bottom'] = Reflective_boundary(domain) |
---|
| 88 | tags['right'] = Transmissive_boundary(domain) |
---|
| 89 | domain.set_boundary(tags) |
---|
| 90 | |
---|
| 91 | #---------------------- |
---|
| 92 | # Set initial condition |
---|
| 93 | domain.set_quantity('elevation', 0.0) |
---|
| 94 | domain.set_quantity('stage', 0.2) |
---|
| 95 | |
---|
| 96 | # Use the inscribed circle with safety factor of 0.9 to establish the time step |
---|
| 97 | # domain.set_to_inscribed_circle(safety_factor=0.9) |
---|
| 98 | |
---|
| 99 | #---------- |
---|
| 100 | # Evolution |
---|
| 101 | import time |
---|
| 102 | t0 = time.time() |
---|
| 103 | for t in domain.evolve(yieldstep = 5.0, finaltime = 50.0): |
---|
| 104 | domain.write_time() |
---|
| 105 | |
---|
| 106 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
| 107 | |
---|
| 108 | N = domain.number_of_elements |
---|
| 109 | |
---|
| 110 | Stage = domain.quantities['stage'] |
---|
| 111 | stage = Stage.centroid_values |
---|
| 112 | XY = domain.centroid_coordinates |
---|
| 113 | |
---|
| 114 | # Calculate average |
---|
| 115 | average_stage = 0.0 |
---|
| 116 | n_points = 0 |
---|
| 117 | for n in range(N): |
---|
| 118 | if XY[n,0] > 35.0: |
---|
| 119 | average_stage = average_stage + stage[n] |
---|
| 120 | n_points = n_points + 1 |
---|
| 121 | |
---|
| 122 | average_stage = average_stage/n_points |
---|
| 123 | |
---|
| 124 | #Standard Deviation |
---|
| 125 | sigma = 0.0 |
---|
| 126 | max_stage = -999999. |
---|
| 127 | min_stage = 999999 |
---|
| 128 | for n in range(N): |
---|
| 129 | if XY[n,0] > 35.0: |
---|
| 130 | sigma = sigma + (average_stage - stage[n])**2 |
---|
| 131 | if stage[n] > max_stage: |
---|
| 132 | max_stage = stage[n] |
---|
| 133 | if stage[n] < min_stage: |
---|
| 134 | min_stage = stage[n] |
---|
| 135 | |
---|
| 136 | import math |
---|
| 137 | sigma = math.sqrt(sigma/(n_points-1)) |
---|
| 138 | |
---|
| 139 | print L_2, average_stage, sigma, max_stage, min_stage, n_points |
---|
| 140 | |
---|
| 141 | domain.initialise_visualiser() |
---|
| 142 | domain.visualiser.update_all() |
---|