[6038] | 1 | """Class Domain - |
---|
| 2 | 1D interval domains for finite-volume computations of |
---|
| 3 | the shallow water wave equation. |
---|
| 4 | |
---|
| 5 | This module contains a specialisation of class Domain from module domain.py |
---|
| 6 | consisting of methods specific to the Shallow Water Wave Equation |
---|
| 7 | |
---|
[6453] | 8 | This particular modification of the Domain class implements the ability to |
---|
| 9 | vary the width of the 1D channel that the water flows in. As a result the |
---|
| 10 | conserved variables are different than previous implementations and so are the |
---|
| 11 | equations. |
---|
[6038] | 12 | |
---|
| 13 | U_t + E_x = S |
---|
| 14 | |
---|
| 15 | where |
---|
[6453] | 16 | ------------!!!! NOTE THIS NEEDS UPDATING !!!!------------------ |
---|
| 17 | U = [A, Q] |
---|
| 18 | E = [Q, Q^2/A + gh^2/2] |
---|
[6038] | 19 | S represents source terms forcing the system |
---|
| 20 | (e.g. gravity, friction, wind stress, ...) |
---|
| 21 | |
---|
| 22 | and _t, _x, _y denote the derivative with respect to t, x and y respectiely. |
---|
| 23 | |
---|
| 24 | The quantities are |
---|
| 25 | |
---|
| 26 | symbol variable name explanation |
---|
| 27 | x x horizontal distance from origin [m] |
---|
| 28 | z elevation elevation of bed on which flow is modelled [m] |
---|
| 29 | h height water height above z [m] |
---|
| 30 | w stage absolute water level, w = z+h [m] |
---|
| 31 | u speed in the x direction [m/s] |
---|
| 32 | uh xmomentum momentum in the x direction [m^2/s] |
---|
| 33 | |
---|
| 34 | eta mannings friction coefficient [to appear] |
---|
| 35 | nu wind stress coefficient [to appear] |
---|
| 36 | |
---|
| 37 | The conserved quantities are w, uh |
---|
[6453] | 38 | -------------------------------------------------------------------------- |
---|
[6038] | 39 | For details see e.g. |
---|
| 40 | Christopher Zoppou and Stephen Roberts, |
---|
| 41 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
| 42 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
| 43 | |
---|
| 44 | |
---|
[6453] | 45 | John Jakeman, Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou, |
---|
| 46 | Padarn Wilson, Geoscience Australia, 2008 |
---|
[6038] | 47 | """ |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | from domain import * |
---|
| 51 | Generic_Domain = Domain #Rename |
---|
| 52 | |
---|
| 53 | #Shallow water domain |
---|
| 54 | class Domain(Generic_Domain): |
---|
| 55 | |
---|
| 56 | def __init__(self, coordinates, boundary = None, tagged_elements = None): |
---|
| 57 | |
---|
| 58 | conserved_quantities = ['stage', 'xmomentum'] |
---|
| 59 | evolved_quantities = ['stage', 'xmomentum', 'elevation', 'height', 'velocity'] |
---|
| 60 | other_quantities = ['friction'] |
---|
| 61 | Generic_Domain.__init__(self, |
---|
| 62 | coordinates = coordinates, |
---|
| 63 | boundary = boundary, |
---|
| 64 | conserved_quantities = conserved_quantities, |
---|
| 65 | evolved_quantities = evolved_quantities, |
---|
| 66 | other_quantities = other_quantities, |
---|
| 67 | tagged_elements = tagged_elements) |
---|
| 68 | |
---|
| 69 | from config import minimum_allowed_height, g, h0 |
---|
| 70 | self.minimum_allowed_height = minimum_allowed_height |
---|
| 71 | self.g = g |
---|
| 72 | self.h0 = h0 |
---|
| 73 | |
---|
| 74 | #forcing terms not included in 1d domain ?WHy? |
---|
| 75 | self.forcing_terms.append(gravity) |
---|
| 76 | #self.forcing_terms.append(manning_friction) |
---|
| 77 | #print "\nI have Removed forcing terms line 64 1dsw" |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | #Stored output |
---|
| 81 | self.store = True |
---|
| 82 | self.format = 'sww' |
---|
| 83 | self.smooth = True |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | #Reduction operation for get_vertex_values |
---|
| 87 | from util import mean |
---|
| 88 | self.reduction = mean |
---|
| 89 | #self.reduction = min #Looks better near steep slopes |
---|
| 90 | |
---|
| 91 | self.set_quantities_to_be_stored(['stage','xmomentum']) |
---|
| 92 | |
---|
| 93 | self.__doc__ = 'shallow_water_domain' |
---|
| 94 | |
---|
| 95 | self.check_integrity() |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | def check_integrity(self): |
---|
| 99 | |
---|
| 100 | #Check that we are solving the shallow water wave equation |
---|
| 101 | |
---|
| 102 | msg = 'First conserved quantity must be "stage"' |
---|
| 103 | assert self.conserved_quantities[0] == 'stage', msg |
---|
| 104 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
| 105 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
| 106 | |
---|
| 107 | msg = 'First evolved quantity must be "stage"' |
---|
| 108 | assert self.evolved_quantities[0] == 'stage', msg |
---|
| 109 | msg = 'Second evolved quantity must be "xmomentum"' |
---|
| 110 | assert self.evolved_quantities[1] == 'xmomentum', msg |
---|
| 111 | msg = 'Third evolved quantity must be "elevation"' |
---|
| 112 | assert self.evolved_quantities[2] == 'elevation', msg |
---|
| 113 | msg = 'Fourth evolved quantity must be "height"' |
---|
| 114 | assert self.evolved_quantities[3] == 'height', msg |
---|
| 115 | msg = 'Fifth evolved quantity must be "velocity"' |
---|
| 116 | assert self.evolved_quantities[4] == 'velocity', msg |
---|
| 117 | |
---|
| 118 | Generic_Domain.check_integrity(self) |
---|
| 119 | |
---|
| 120 | def compute_fluxes(self): |
---|
| 121 | #Call correct module function |
---|
| 122 | #(either from this module or C-extension) |
---|
| 123 | compute_fluxes_vel(self) |
---|
| 124 | |
---|
| 125 | def distribute_to_vertices_and_edges(self): |
---|
| 126 | #Call correct module function |
---|
| 127 | #(either from this module or C-extension) |
---|
| 128 | distribute_to_vertices_and_edges_limit_w_u(self) |
---|
| 129 | |
---|
| 130 | |
---|
[6042] | 131 | #=============== End of Channel Domain =============================== |
---|
[6038] | 132 | #----------------------------------- |
---|
| 133 | # Compute fluxes interface |
---|
| 134 | #----------------------------------- |
---|
| 135 | def compute_fluxes(domain): |
---|
| 136 | """ |
---|
| 137 | Python version of compute fluxes (local_compute_fluxes) |
---|
| 138 | is available in test_shallow_water_vel_domain.py |
---|
| 139 | """ |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | from Numeric import zeros, Float |
---|
| 143 | import sys |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | timestep = float(sys.maxint) |
---|
| 147 | |
---|
| 148 | stage = domain.quantities['stage'] |
---|
| 149 | xmom = domain.quantities['xmomentum'] |
---|
| 150 | bed = domain.quantities['elevation'] |
---|
| 151 | |
---|
| 152 | |
---|
| 153 | from comp_flux_vel_ext import compute_fluxes_ext |
---|
| 154 | |
---|
| 155 | domain.flux_timestep = compute_fluxes_ext(timestep,domain,stage,xmom,bed) |
---|
| 156 | |
---|
| 157 | |
---|
| 158 | #----------------------------------- |
---|
| 159 | # Compute flux definition with vel |
---|
| 160 | #----------------------------------- |
---|
| 161 | def compute_fluxes_vel(domain): |
---|
| 162 | from Numeric import zeros, Float |
---|
| 163 | import sys |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | timestep = float(sys.maxint) |
---|
| 167 | |
---|
| 168 | stage = domain.quantities['stage'] |
---|
| 169 | xmom = domain.quantities['xmomentum'] |
---|
| 170 | bed = domain.quantities['elevation'] |
---|
| 171 | height = domain.quantities['height'] |
---|
| 172 | velocity = domain.quantities['velocity'] |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | from comp_flux_vel_ext import compute_fluxes_vel_ext |
---|
| 176 | |
---|
| 177 | domain.flux_timestep = compute_fluxes_vel_ext(timestep,domain,stage,xmom,bed,height,velocity) |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | #-------------------------------------------------------------------------- |
---|
| 181 | def distribute_to_vertices_and_edges_limit_w_u(domain): |
---|
| 182 | """Distribution from centroids to vertices specific to the |
---|
| 183 | shallow water wave |
---|
| 184 | equation. |
---|
| 185 | |
---|
| 186 | It will ensure that h (w-z) is always non-negative even in the |
---|
| 187 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
| 188 | and deep cases. |
---|
| 189 | |
---|
| 190 | In addition, all conserved quantities get distributed as per either a |
---|
| 191 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 192 | |
---|
| 193 | FIXME: more explanation about removal of artificial variability etc |
---|
| 194 | |
---|
| 195 | Precondition: |
---|
| 196 | All quantities defined at centroids and bed elevation defined at |
---|
| 197 | vertices. |
---|
| 198 | |
---|
| 199 | Postcondition |
---|
| 200 | Conserved quantities defined at vertices |
---|
| 201 | |
---|
| 202 | """ |
---|
| 203 | |
---|
| 204 | #from config import optimised_gradient_limiter |
---|
| 205 | |
---|
| 206 | #Remove very thin layers of water |
---|
| 207 | #protect_against_infinitesimal_and_negative_heights(domain) |
---|
| 208 | |
---|
| 209 | import sys |
---|
| 210 | from Numeric import zeros, Float |
---|
| 211 | from config import epsilon, h0 |
---|
| 212 | |
---|
| 213 | N = domain.number_of_elements |
---|
| 214 | |
---|
| 215 | #Shortcuts |
---|
| 216 | Stage = domain.quantities['stage'] |
---|
| 217 | Xmom = domain.quantities['xmomentum'] |
---|
| 218 | Bed = domain.quantities['elevation'] |
---|
| 219 | Height = domain.quantities['height'] |
---|
| 220 | Velocity = domain.quantities['velocity'] |
---|
| 221 | |
---|
| 222 | #Arrays |
---|
| 223 | w_C = Stage.centroid_values |
---|
| 224 | uh_C = Xmom.centroid_values |
---|
| 225 | z_C = Bed.centroid_values |
---|
| 226 | h_C = Height.centroid_values |
---|
| 227 | u_C = Velocity.centroid_values |
---|
| 228 | |
---|
| 229 | #print id(h_C) |
---|
| 230 | for i in range(N): |
---|
| 231 | h_C[i] = w_C[i] - z_C[i] |
---|
| 232 | if h_C[i] <= 1.0e-12: |
---|
| 233 | #print 'h_C[%d]= %15.5e\n' % (i,h_C[i]) |
---|
| 234 | h_C[i] = 0.0 |
---|
| 235 | w_C[i] = z_C[i] |
---|
| 236 | #uh_C[i] = 0.0 |
---|
| 237 | |
---|
| 238 | # u_C[i] = 0.0 |
---|
| 239 | # else: |
---|
| 240 | # u_C[i] = uh_C[i]/h_C[i] |
---|
| 241 | |
---|
| 242 | h0 = 1.0e-12 |
---|
| 243 | for i in range(len(h_C)): |
---|
| 244 | if h_C[i] < 1.0e-12: |
---|
| 245 | u_C[i] = 0.0 #Could have been negative |
---|
| 246 | h_C[i] = 0.0 |
---|
| 247 | else: |
---|
| 248 | u_C[i] = uh_C[i]/(h_C[i] + h0/h_C[i]) |
---|
| 249 | #u_C[i] = uh_C[i]/h_C[i] |
---|
| 250 | |
---|
| 251 | for name in [ 'velocity', 'stage' ]: |
---|
| 252 | Q = domain.quantities[name] |
---|
| 253 | if domain.order == 1: |
---|
| 254 | Q.extrapolate_first_order() |
---|
| 255 | elif domain.order == 2: |
---|
| 256 | Q.extrapolate_second_order() |
---|
| 257 | else: |
---|
| 258 | raise 'Unknown order' |
---|
| 259 | |
---|
| 260 | w_V = domain.quantities['stage'].vertex_values |
---|
| 261 | z_V = domain.quantities['elevation'].vertex_values |
---|
| 262 | h_V = domain.quantities['height'].vertex_values |
---|
| 263 | u_V = domain.quantities['velocity'].vertex_values |
---|
| 264 | uh_V = domain.quantities['xmomentum'].vertex_values |
---|
| 265 | |
---|
| 266 | h_V[:] = w_V - z_V |
---|
| 267 | for i in range(len(h_C)): |
---|
| 268 | for j in range(2): |
---|
| 269 | if h_V[i,j] < 0.0 : |
---|
| 270 | #print 'h_V[%d,%d] = %f \n' % (i,j,h_V[i,j]) |
---|
| 271 | dh = h_V[i,j] |
---|
| 272 | h_V[i,j] = 0.0 |
---|
| 273 | w_V[i,j] = z_V[i,j] |
---|
| 274 | h_V[i,(j+1)%2] = h_V[i,(j+1)%2] + dh |
---|
| 275 | w_V[i,(j+1)%2] = w_V[i,(j+1)%2] + dh |
---|
| 276 | |
---|
| 277 | uh_V[:] = u_V * h_V |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | return |
---|
| 281 | |
---|
| 282 | #--------------------------------------------------------------------------- |
---|
| 283 | def distribute_to_vertices_and_edges_limit_w_uh(domain): |
---|
| 284 | """Distribution from centroids to vertices specific to the |
---|
| 285 | shallow water wave equation. |
---|
| 286 | |
---|
| 287 | In addition, all conserved quantities get distributed as per either a |
---|
| 288 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 289 | |
---|
| 290 | Precondition: |
---|
| 291 | All quantities defined at centroids and bed elevation defined at |
---|
| 292 | vertices. |
---|
| 293 | |
---|
| 294 | Postcondition |
---|
| 295 | Conserved quantities defined at vertices |
---|
| 296 | |
---|
| 297 | """ |
---|
| 298 | |
---|
| 299 | import sys |
---|
| 300 | from Numeric import zeros, Float |
---|
| 301 | from config import epsilon, h0 |
---|
| 302 | |
---|
| 303 | N = domain.number_of_elements |
---|
| 304 | |
---|
| 305 | #Shortcuts |
---|
| 306 | Stage = domain.quantities['stage'] |
---|
| 307 | Xmom = domain.quantities['xmomentum'] |
---|
| 308 | Bed = domain.quantities['elevation'] |
---|
| 309 | Height = domain.quantities['height'] |
---|
| 310 | Velocity = domain.quantities['velocity'] |
---|
| 311 | |
---|
| 312 | #Arrays |
---|
| 313 | w_C = Stage.centroid_values |
---|
| 314 | uh_C = Xmom.centroid_values |
---|
| 315 | z_C = Bed.centroid_values |
---|
| 316 | h_C = Height.centroid_values |
---|
| 317 | u_C = Velocity.centroid_values |
---|
| 318 | |
---|
| 319 | |
---|
| 320 | for i in range(N): |
---|
| 321 | h_C[i] = w_C[i] - z_C[i] |
---|
| 322 | if h_C[i] <= 1.0e-6: |
---|
| 323 | #print 'h_C[%d]= %15.5e\n' % (i,h_C[i]) |
---|
| 324 | h_C[i] = 0.0 |
---|
| 325 | w_C[i] = z_C[i] |
---|
| 326 | uh_C[i] = 0.0 |
---|
| 327 | |
---|
| 328 | for name in [ 'stage', 'xmomentum']: |
---|
| 329 | Q = domain.quantities[name] |
---|
| 330 | if domain.order == 1: |
---|
| 331 | Q.extrapolate_first_order() |
---|
| 332 | elif domain.order == 2: |
---|
| 333 | Q.extrapolate_second_order() |
---|
| 334 | else: |
---|
| 335 | raise 'Unknown order' |
---|
| 336 | |
---|
| 337 | w_V = domain.quantities['stage'].vertex_values |
---|
| 338 | z_V = domain.quantities['elevation'].vertex_values |
---|
| 339 | h_V = domain.quantities['height'].vertex_values |
---|
| 340 | u_V = domain.quantities['velocity'].vertex_values |
---|
| 341 | uh_V = domain.quantities['xmomentum'].vertex_values |
---|
| 342 | |
---|
| 343 | h_V[:] = w_V - z_V |
---|
| 344 | |
---|
| 345 | for i in range(len(h_C)): |
---|
| 346 | for j in range(2): |
---|
| 347 | if h_V[i,j] < 0.0 : |
---|
| 348 | #print 'h_V[%d,%d] = %f \n' % (i,j,h_V[i,j]) |
---|
| 349 | dh = h_V[i,j] |
---|
| 350 | h_V[i,j] = 0.0 |
---|
| 351 | w_V[i,j] = z_V[i,j] |
---|
| 352 | h_V[i,(j+1)%2] = h_V[i,(j+1)%2] + dh |
---|
| 353 | w_V[i,(j+1)%2] = w_V[i,(j+1)%2] + dh |
---|
| 354 | u_V[i,j] = 0.0 |
---|
| 355 | if h_V[i,j] < h0: |
---|
| 356 | u_V[i,j] |
---|
| 357 | else: |
---|
| 358 | u_V[i,j] = uh_V[i,j]/(h_V[i,j] + h0/h_V[i,j]) |
---|
| 359 | |
---|
| 360 | |
---|
| 361 | #-------------------------------------------------------- |
---|
| 362 | #Boundaries - specific to the shallow_water_vel_domain |
---|
| 363 | #-------------------------------------------------------- |
---|
| 364 | class Reflective_boundary(Boundary): |
---|
| 365 | """Reflective boundary returns same conserved quantities as |
---|
| 366 | those present in its neighbour volume but reflected. |
---|
| 367 | |
---|
| 368 | This class is specific to the shallow water equation as it |
---|
| 369 | works with the momentum quantities assumed to be the second |
---|
| 370 | and third conserved quantities. |
---|
| 371 | """ |
---|
| 372 | |
---|
| 373 | def __init__(self, domain = None): |
---|
| 374 | Boundary.__init__(self) |
---|
| 375 | |
---|
| 376 | if domain is None: |
---|
| 377 | msg = 'Domain must be specified for reflective boundary' |
---|
| 378 | raise msg |
---|
| 379 | |
---|
| 380 | #Handy shorthands |
---|
| 381 | self.normals = domain.normals |
---|
| 382 | self.stage = domain.quantities['stage'].vertex_values |
---|
| 383 | self.xmom = domain.quantities['xmomentum'].vertex_values |
---|
| 384 | self.bed = domain.quantities['elevation'].vertex_values |
---|
| 385 | self.height = domain.quantities['height'].vertex_values |
---|
| 386 | self.velocity = domain.quantities['velocity'].vertex_values |
---|
| 387 | |
---|
| 388 | from Numeric import zeros, Float |
---|
| 389 | #self.conserved_quantities = zeros(3, Float) |
---|
| 390 | self.evolved_quantities = zeros(5, Float) |
---|
| 391 | |
---|
| 392 | def __repr__(self): |
---|
| 393 | return 'Reflective_boundary' |
---|
| 394 | |
---|
| 395 | |
---|
| 396 | def evaluate(self, vol_id, edge_id): |
---|
| 397 | """Reflective boundaries reverses the outward momentum |
---|
| 398 | of the volume they serve. |
---|
| 399 | """ |
---|
| 400 | |
---|
| 401 | q = self.evolved_quantities |
---|
| 402 | q[0] = self.stage[vol_id, edge_id] |
---|
| 403 | q[1] = -self.xmom[vol_id, edge_id] |
---|
| 404 | q[2] = self.bed[vol_id, edge_id] |
---|
| 405 | q[3] = self.height[vol_id, edge_id] |
---|
| 406 | q[4] = -self.velocity[vol_id, edge_id] |
---|
| 407 | |
---|
| 408 | #print "In Reflective q ",q |
---|
| 409 | |
---|
| 410 | |
---|
| 411 | return q |
---|
| 412 | |
---|
| 413 | class Dirichlet_boundary(Boundary): |
---|
| 414 | """Dirichlet boundary returns constant values for the |
---|
| 415 | conserved quantities |
---|
| 416 | """ |
---|
| 417 | |
---|
| 418 | |
---|
| 419 | def __init__(self, evolved_quantities=None): |
---|
| 420 | Boundary.__init__(self) |
---|
| 421 | |
---|
| 422 | if evolved_quantities is None: |
---|
| 423 | msg = 'Must specify one value for each evolved quantity' |
---|
| 424 | raise msg |
---|
| 425 | |
---|
| 426 | from Numeric import array, Float |
---|
| 427 | self.evolved_quantities=array(evolved_quantities).astype(Float) |
---|
| 428 | |
---|
| 429 | def __repr__(self): |
---|
| 430 | return 'Dirichlet boundary (%s)' %self.evolved_quantities |
---|
| 431 | |
---|
| 432 | def evaluate(self, vol_id=None, edge_id=None): |
---|
| 433 | return self.evolved_quantities |
---|
| 434 | |
---|
| 435 | |
---|
| 436 | #---------------------------- |
---|
| 437 | #Standard forcing terms: |
---|
| 438 | #--------------------------- |
---|
| 439 | def gravity(domain): |
---|
| 440 | """Apply gravitational pull in the presence of bed slope |
---|
| 441 | """ |
---|
| 442 | |
---|
| 443 | from util import gradient |
---|
| 444 | from Numeric import zeros, Float, array, sum |
---|
| 445 | |
---|
| 446 | |
---|
| 447 | |
---|
| 448 | Stage = domain.quantities['stage'] |
---|
| 449 | Xmom = domain.quantities['xmomentum'] |
---|
| 450 | Elevation = domain.quantities['elevation'] |
---|
| 451 | Height = domain.quantities['height'] |
---|
| 452 | |
---|
| 453 | xmom_ud = Xmom.explicit_update |
---|
| 454 | #stage_ud = Stage.explicit_update |
---|
| 455 | |
---|
| 456 | |
---|
| 457 | #h = Stage.vertex_values - Elevation.vertex_values |
---|
| 458 | h = Height.vertex_values |
---|
| 459 | b = Elevation.vertex_values |
---|
| 460 | w = Stage.vertex_values |
---|
| 461 | |
---|
| 462 | x = domain.get_vertex_coordinates() |
---|
| 463 | g = domain.g |
---|
| 464 | |
---|
| 465 | for k in range(domain.number_of_elements): |
---|
| 466 | avg_h = 0.5*(h[k,0] + h[k,1]) |
---|
| 467 | |
---|
| 468 | #Compute bed slope |
---|
| 469 | x0, x1 = x[k,:] |
---|
| 470 | b0, b1 = b[k,:] |
---|
| 471 | bx = gradient(x0, x1, b0, b1) |
---|
| 472 | |
---|
| 473 | #Update momentum (explicit update is reset to source values) |
---|
| 474 | xmom_ud[k] += -g*bx*avg_h |
---|
| 475 | #stage_ud[k] = 0.0 |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | def manning_friction(domain): |
---|
| 479 | """Apply (Manning) friction to water momentum |
---|
| 480 | """ |
---|
| 481 | |
---|
| 482 | from math import sqrt |
---|
| 483 | |
---|
| 484 | w = domain.quantities['stage'].centroid_values |
---|
| 485 | z = domain.quantities['elevation'].centroid_values |
---|
| 486 | h = w-z |
---|
| 487 | |
---|
| 488 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 489 | #vh = domain.quantities['ymomentum'].centroid_values |
---|
| 490 | eta = domain.quantities['friction'].centroid_values |
---|
| 491 | |
---|
| 492 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 493 | #ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
| 494 | |
---|
| 495 | N = domain.number_of_elements |
---|
| 496 | eps = domain.minimum_allowed_height |
---|
| 497 | g = domain.g |
---|
| 498 | |
---|
| 499 | for k in range(N): |
---|
| 500 | if eta[k] >= eps: |
---|
| 501 | if h[k] >= eps: |
---|
| 502 | #S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
| 503 | S = -g * eta[k]**2 * uh[k] |
---|
| 504 | S /= h[k]**(7.0/3) |
---|
| 505 | |
---|
| 506 | #Update momentum |
---|
| 507 | xmom_update[k] += S*uh[k] |
---|
| 508 | #ymom_update[k] += S*vh[k] |
---|
| 509 | |
---|
| 510 | def linear_friction(domain): |
---|
| 511 | """Apply linear friction to water momentum |
---|
| 512 | |
---|
| 513 | Assumes quantity: 'linear_friction' to be present |
---|
| 514 | """ |
---|
| 515 | |
---|
| 516 | from math import sqrt |
---|
| 517 | |
---|
| 518 | w = domain.quantities['stage'].centroid_values |
---|
| 519 | z = domain.quantities['elevation'].centroid_values |
---|
| 520 | h = w-z |
---|
| 521 | |
---|
| 522 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 523 | tau = domain.quantities['linear_friction'].centroid_values |
---|
| 524 | |
---|
| 525 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 526 | |
---|
| 527 | N = domain.number_of_elements |
---|
| 528 | eps = domain.minimum_allowed_height |
---|
| 529 | |
---|
| 530 | for k in range(N): |
---|
| 531 | if tau[k] >= eps: |
---|
| 532 | if h[k] >= eps: |
---|
| 533 | S = -tau[k]/h[k] |
---|
| 534 | |
---|
| 535 | #Update momentum |
---|
| 536 | xmom_update[k] += S*uh[k] |
---|
| 537 | |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | def check_forcefield(f): |
---|
| 541 | """Check that f is either |
---|
| 542 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
| 543 | and that it returns an array or a list of same length |
---|
| 544 | as x and y |
---|
| 545 | 2: a scalar |
---|
| 546 | """ |
---|
| 547 | |
---|
| 548 | from Numeric import ones, Float, array |
---|
| 549 | |
---|
| 550 | |
---|
| 551 | if callable(f): |
---|
| 552 | #N = 3 |
---|
| 553 | N = 2 |
---|
| 554 | #x = ones(3, Float) |
---|
| 555 | #y = ones(3, Float) |
---|
| 556 | x = ones(2, Float) |
---|
| 557 | #y = ones(2, Float) |
---|
| 558 | |
---|
| 559 | try: |
---|
| 560 | #q = f(1.0, x=x, y=y) |
---|
| 561 | q = f(1.0, x=x) |
---|
| 562 | except Exception, e: |
---|
| 563 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
| 564 | #FIXME: Reconsider this semantics |
---|
| 565 | raise msg |
---|
| 566 | |
---|
| 567 | try: |
---|
| 568 | q = array(q).astype(Float) |
---|
| 569 | except: |
---|
| 570 | msg = 'Return value from vector function %s could ' %f |
---|
| 571 | msg += 'not be converted into a Numeric array of floats.\n' |
---|
| 572 | msg += 'Specified function should return either list or array.' |
---|
| 573 | raise msg |
---|
| 574 | |
---|
| 575 | #Is this really what we want? |
---|
| 576 | msg = 'Return vector from function %s ' %f |
---|
| 577 | msg += 'must have same lenght as input vectors' |
---|
| 578 | assert len(q) == N, msg |
---|
| 579 | |
---|
| 580 | else: |
---|
| 581 | try: |
---|
| 582 | f = float(f) |
---|
| 583 | except: |
---|
| 584 | msg = 'Force field %s must be either a scalar' %f |
---|
| 585 | msg += ' or a vector function' |
---|
| 586 | raise msg |
---|
| 587 | return f |
---|
| 588 | |
---|