[6453] | 1 | """Class Domain - |
---|
| 2 | 1D interval domains for finite-volume computations of |
---|
| 3 | the shallow water wave equation. |
---|
| 4 | |
---|
| 5 | This module contains a specialisation of class Domain from module domain.py |
---|
| 6 | consisting of methods specific to the Shallow Water Wave Equation |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | U_t + E_x = S |
---|
| 10 | |
---|
| 11 | where |
---|
| 12 | |
---|
| 13 | U = [w, uh] |
---|
| 14 | E = [uh, u^2h + gh^2/2] |
---|
| 15 | S represents source terms forcing the system |
---|
| 16 | (e.g. gravity, friction, wind stress, ...) |
---|
| 17 | |
---|
| 18 | and _t, _x, _y denote the derivative with respect to t, x and y respectiely. |
---|
| 19 | |
---|
| 20 | The quantities are |
---|
| 21 | |
---|
| 22 | symbol variable name explanation |
---|
| 23 | x x horizontal distance from origin [m] |
---|
| 24 | z elevation elevation of bed on which flow is modelled [m] |
---|
| 25 | h height water height above z [m] |
---|
| 26 | w stage absolute water level, w = z+h [m] |
---|
| 27 | u speed in the x direction [m/s] |
---|
| 28 | uh xmomentum momentum in the x direction [m^2/s] |
---|
| 29 | |
---|
| 30 | eta mannings friction coefficient [to appear] |
---|
| 31 | nu wind stress coefficient [to appear] |
---|
| 32 | |
---|
| 33 | The conserved quantities are w, uh |
---|
| 34 | |
---|
| 35 | For details see e.g. |
---|
| 36 | Christopher Zoppou and Stephen Roberts, |
---|
| 37 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
| 38 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
| 39 | |
---|
| 40 | |
---|
| 41 | John Jakeman, Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
| 42 | Geoscience Australia, 2006 |
---|
| 43 | """ |
---|
| 44 | |
---|
| 45 | |
---|
| 46 | from domain import * |
---|
| 47 | Generic_Domain = Domain #Rename |
---|
| 48 | |
---|
| 49 | #Shallow water domain |
---|
| 50 | class Domain(Generic_Domain): |
---|
| 51 | |
---|
| 52 | def __init__(self, coordinates, boundary = None, tagged_elements = None): |
---|
| 53 | |
---|
| 54 | conserved_quantities = ['area', 'discharge'] |
---|
| 55 | evolved_quantities = ['area', 'discharge', 'elevation', 'height', 'stage'] |
---|
| 56 | other_quantities = ['friction'] |
---|
| 57 | Generic_Domain.__init__(self, |
---|
| 58 | coordinates = coordinates, |
---|
| 59 | boundary = boundary, |
---|
| 60 | conserved_quantities = conserved_quantities, |
---|
| 61 | evolved_quantities = evolved_quantities, |
---|
| 62 | other_quantities = other_quantities, |
---|
| 63 | tagged_elements = tagged_elements) |
---|
| 64 | |
---|
| 65 | from config import minimum_allowed_height, g, h0 |
---|
| 66 | self.minimum_allowed_height = minimum_allowed_height |
---|
| 67 | self.g = g |
---|
| 68 | self.h0 = h0 |
---|
| 69 | |
---|
| 70 | #forcing terms not included in 1d domain ?WHy? |
---|
| 71 | self.forcing_terms.append(gravity) |
---|
| 72 | #self.forcing_terms.append(manning_friction) |
---|
| 73 | #print "\nI have Removed forcing terms line 64 1dsw" |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | #Stored output |
---|
| 77 | self.store = True |
---|
| 78 | self.format = 'sww' |
---|
| 79 | self.smooth = True |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | #Reduction operation for get_vertex_values |
---|
| 83 | from util import mean |
---|
| 84 | self.reduction = mean |
---|
| 85 | #self.reduction = min #Looks better near steep slopes |
---|
| 86 | |
---|
| 87 | self.set_quantities_to_be_stored(['area','discharge']) |
---|
| 88 | |
---|
| 89 | self.__doc__ = 'shallow_water_domain' |
---|
| 90 | |
---|
| 91 | # self.check_integrity() |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | def check_integrity(self): |
---|
| 95 | |
---|
| 96 | #Check that we are solving the shallow water wave equation |
---|
| 97 | |
---|
| 98 | msg = 'First conserved quantity must be "stage"' |
---|
| 99 | assert self.conserved_quantities[0] == 'stage', msg |
---|
| 100 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
| 101 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
| 102 | |
---|
| 103 | msg = 'First evolved quantity must be "stage"' |
---|
| 104 | assert self.evolved_quantities[0] == 'stage', msg |
---|
| 105 | msg = 'Second evolved quantity must be "xmomentum"' |
---|
| 106 | assert self.evolved_quantities[1] == 'xmomentum', msg |
---|
| 107 | msg = 'Third evolved quantity must be "elevation"' |
---|
| 108 | assert self.evolved_quantities[2] == 'elevation', msg |
---|
| 109 | msg = 'Fourth evolved quantity must be "height"' |
---|
| 110 | assert self.evolved_quantities[3] == 'height', msg |
---|
| 111 | msg = 'Fifth evolved quantity must be "velocity"' |
---|
| 112 | assert self.evolved_quantities[4] == 'velocity', msg |
---|
| 113 | |
---|
| 114 | Generic_Domain.check_integrity(self) |
---|
| 115 | |
---|
| 116 | def compute_fluxes(self): |
---|
| 117 | #Call correct module function |
---|
| 118 | #(either from this module or C-extension) |
---|
| 119 | compute_fluxes_channel(self) |
---|
| 120 | |
---|
| 121 | def distribute_to_vertices_and_edges(self): |
---|
| 122 | #Call correct module function |
---|
| 123 | #(either from this module or C-extension) |
---|
| 124 | distribute_to_vertices_and_edges_limit_a_d(self) |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | #=============== End of Shallow Water Domain =============================== |
---|
| 128 | #----------------------------------- |
---|
| 129 | # Compute fluxes interface |
---|
| 130 | #----------------------------------- |
---|
| 131 | def compute_fluxes(domain): |
---|
| 132 | """ |
---|
| 133 | Python version of compute fluxes (local_compute_fluxes) |
---|
| 134 | is available in test_shallow_water_vel_domain.py |
---|
| 135 | """ |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | from Numeric import zeros, Float |
---|
| 139 | import sys |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | timestep = float(sys.maxint) |
---|
| 143 | |
---|
| 144 | stage = domain.quantities['stage'] |
---|
| 145 | xmom = domain.quantities['xmomentum'] |
---|
| 146 | bed = domain.quantities['elevation'] |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | #from comp_flux_vel_ext import compute_fluxes_ext |
---|
| 150 | |
---|
| 151 | #domain.flux_timestep = compute_fluxes_ext(timestep,domain,stage,xmom,bed) |
---|
| 152 | domain.flux_timestep = .1 |
---|
| 153 | |
---|
| 154 | #----------------------------------- |
---|
| 155 | # Compute flux definition with vel |
---|
| 156 | #----------------------------------- |
---|
| 157 | def compute_fluxes_vel(domain): |
---|
| 158 | from Numeric import zeros, Float |
---|
| 159 | import sys |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | timestep = float(sys.maxint) |
---|
| 163 | |
---|
| 164 | stage = domain.quantities['stage'] |
---|
| 165 | xmom = domain.quantities['xmomentum'] |
---|
| 166 | bed = domain.quantities['elevation'] |
---|
| 167 | height = domain.quantities['height'] |
---|
| 168 | velocity = domain.quantities['velocity'] |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | from comp_flux_vel_ext import compute_fluxes_vel_ext |
---|
| 172 | |
---|
| 173 | domain.flux_timestep = compute_fluxes_vel_ext(timestep,domain,stage,xmom,bed,height,velocity) |
---|
| 174 | |
---|
| 175 | #---------------------------------- |
---|
| 176 | # Compute fluxes channel |
---|
| 177 | #---------------------------------- |
---|
| 178 | def compute_fluxes_channel(domain): |
---|
| 179 | from Numeric import zeros, Float |
---|
| 180 | import sys |
---|
| 181 | |
---|
| 182 | timestep = float(sys.maxint) |
---|
| 183 | |
---|
| 184 | area = domain.quantities['area'] |
---|
| 185 | discharge = domain.quantities['discharge'] |
---|
| 186 | bed = domain.quantities['elevation'] |
---|
| 187 | height = domain.quantities['height'] |
---|
| 188 | stage = domain.quantities['stage'] |
---|
| 189 | |
---|
| 190 | #from channel_domain_ext import compute_fluxes_channel_ext |
---|
| 191 | |
---|
| 192 | # domain.flux_timestep = compute_fluxes_channel_ext(timestep,domain,area,discharge,bed,height,stage) |
---|
| 193 | # domain.quantities['area'].explicit_update=ones(410,Float) |
---|
| 194 | domain.flux_timestep = .1 |
---|
| 195 | #print area.vertex_values[0],area.vertex_values[1],area.vertex_values[2] |
---|
| 196 | for i in range(len(domain.coordinates)-1): |
---|
| 197 | fluxesl= channel_flux_func(domain,i-1) |
---|
| 198 | fluxesr= channel_flux_func(domain,i) |
---|
| 199 | #print domain.areas[i] |
---|
| 200 | #print -1*(fluxesl[1]-fluxesr[1]) |
---|
| 201 | #print height.centroid_values[200],height.vertex_values[200] |
---|
| 202 | #print fluxesl[0] |
---|
| 203 | print -1*(fluxesl[0]-fluxesr[0])*domain.areas[i] |
---|
| 204 | area.explicit_update[i]=-1*(fluxesl[0]-fluxesr[0])*domain.areas[i] |
---|
| 205 | discharge.explicit_update[i]=-(fluxesl[1]-fluxesr[1])*domain.areas[i] |
---|
| 206 | |
---|
| 207 | def channel_flux_func(domain, i): |
---|
| 208 | |
---|
| 209 | area = domain.quantities['area'] |
---|
| 210 | discharge = domain.quantities['discharge'] |
---|
| 211 | bed = domain.quantities['elevation'] |
---|
| 212 | height = domain.quantities['height'] |
---|
| 213 | stage = domain.quantities['stage'] |
---|
| 214 | |
---|
| 215 | flux_left0=0 |
---|
| 216 | flux_left1=0 |
---|
| 217 | flux_right0=0 |
---|
| 218 | flux_right1=0 |
---|
| 219 | flux0=0 |
---|
| 220 | flux1=0 |
---|
| 221 | # Crude numerical flux calculation |
---|
| 222 | from math import sqrt |
---|
| 223 | |
---|
| 224 | if i==0 or i==(len(domain.coordinates)-1): |
---|
| 225 | flux_left0=0 |
---|
| 226 | flux_left1=0 |
---|
| 227 | flux_right0=0 |
---|
| 228 | flux_right1=0 |
---|
| 229 | else: |
---|
| 230 | g=9.8 |
---|
| 231 | a_left = area.centroid_values[i-1] |
---|
| 232 | d_left = discharge.centroid_values[i-1] |
---|
| 233 | z_left = bed.centroid_values[i-1] |
---|
| 234 | h_left = height.centroid_values[i-1] |
---|
| 235 | w_left = stage.centroid_values[i-1] |
---|
| 236 | |
---|
| 237 | a_right = area.centroid_values[i] |
---|
| 238 | d_right = discharge.centroid_values[i] |
---|
| 239 | z_right = bed.centroid_values[i] |
---|
| 240 | h_right = height.centroid_values[i] |
---|
| 241 | w_right = stage.centroid_values[i] |
---|
| 242 | |
---|
| 243 | z=(z_left+z_right)/2 |
---|
| 244 | #hbarr=0.5*(height.vertex_values[i][1]+height.vertex_values[i][0]) |
---|
| 245 | #hbarl=0.5*(height.vertex_values[i-1][1]+height.vertex_values[i-1][0]) |
---|
| 246 | hbarr=0 |
---|
| 247 | hbarl=0 |
---|
| 248 | #print hbarl,h_left |
---|
| 249 | if a_left>1.0e-12: |
---|
| 250 | u_left=d_left/a_left |
---|
| 251 | else: |
---|
| 252 | u_left=0 |
---|
| 253 | if a_right>1.0e-12: |
---|
| 254 | u_right=d_right/a_right |
---|
| 255 | else: |
---|
| 256 | u_right=0 |
---|
| 257 | |
---|
| 258 | ## soundspeed_left = sqrt(g*h_left); |
---|
| 259 | ## soundspeed_right = sqrt(g*h_right); |
---|
| 260 | |
---|
| 261 | ## s_max = max(u_left+soundspeed_left,u_right+soundspeed_right) |
---|
| 262 | ## if s_max<0.0: |
---|
| 263 | ## s_max=0 |
---|
| 264 | ## s_min = min(u_left-soundspeed_left,u_right-soundspeed_right) |
---|
| 265 | ## if s_min>0.0: |
---|
| 266 | ## s_min=0 |
---|
| 267 | |
---|
| 268 | flux_left0 = d_left |
---|
| 269 | flux_right1= d_right |
---|
| 270 | if a_left<1.0e-12: |
---|
| 271 | flux_left11=0 |
---|
| 272 | else: |
---|
| 273 | flux_left11=d_left*d_left/a_left |
---|
| 274 | flux_left1=flux_left11+g*(calculateI(h_left,0)-calculateI(hbarl,0)) |
---|
| 275 | if a_right<1.0e-12: |
---|
| 276 | flux_right11=0 |
---|
| 277 | else: |
---|
| 278 | flux_right11=d_right*d_right/a_right |
---|
| 279 | flux_right1=flux_right11+g*(calculateI(h_right,0)-calculateI(hbarr,0)) |
---|
| 280 | #print g*(calculateI(h_right,0)-calculateI(hbarr,0)), g*(calculateI(h_left,0)-calculateI(hbarl,0)) |
---|
| 281 | |
---|
| 282 | flux0 = 0.5*(flux_left0+flux_right0) |
---|
| 283 | flux1 = 0.5*(flux_left1+flux_right1) |
---|
| 284 | return (flux0,flux1) |
---|
| 285 | |
---|
| 286 | def calculateI(H,z0): |
---|
| 287 | return H*H*0.5-z0*H+z0*z0*0.5 |
---|
| 288 | |
---|
| 289 | |
---|
| 290 | #-------------------------------------------------------------------------- |
---|
| 291 | def distribute_to_vertices_and_edges_limit_w_u(domain): |
---|
| 292 | """Distribution from centroids to vertices specific to the |
---|
| 293 | shallow water wave |
---|
| 294 | equation. |
---|
| 295 | |
---|
| 296 | It will ensure that h (w-z) is always non-negative even in the |
---|
| 297 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
| 298 | and deep cases. |
---|
| 299 | |
---|
| 300 | In addition, all conserved quantities get distributed as per either a |
---|
| 301 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 302 | |
---|
| 303 | FIXME: more explanation about removal of artificial variability etc |
---|
| 304 | |
---|
| 305 | Precondition: |
---|
| 306 | All quantities defined at centroids and bed elevation defined at |
---|
| 307 | vertices. |
---|
| 308 | |
---|
| 309 | Postcondition |
---|
| 310 | Conserved quantities defined at vertices |
---|
| 311 | |
---|
| 312 | """ |
---|
| 313 | |
---|
| 314 | #from config import optimised_gradient_limiter |
---|
| 315 | |
---|
| 316 | #Remove very thin layers of water |
---|
| 317 | #protect_against_infinitesimal_and_negative_heights(domain) |
---|
| 318 | |
---|
| 319 | import sys |
---|
| 320 | from Numeric import zeros, Float |
---|
| 321 | from config import epsilon, h0 |
---|
| 322 | |
---|
| 323 | N = domain.number_of_elements |
---|
| 324 | |
---|
| 325 | #Shortcuts |
---|
| 326 | Stage = domain.quantities['stage'] |
---|
| 327 | Xmom = domain.quantities['xmomentum'] |
---|
| 328 | Bed = domain.quantities['elevation'] |
---|
| 329 | Height = domain.quantities['height'] |
---|
| 330 | Velocity = domain.quantities['velocity'] |
---|
| 331 | |
---|
| 332 | #Arrays |
---|
| 333 | w_C = Stage.centroid_values |
---|
| 334 | uh_C = Xmom.centroid_values |
---|
| 335 | z_C = Bed.centroid_values |
---|
| 336 | h_C = Height.centroid_values |
---|
| 337 | u_C = Velocity.centroid_values |
---|
| 338 | |
---|
| 339 | #print id(h_C) |
---|
| 340 | for i in range(N): |
---|
| 341 | h_C[i] = w_C[i] - z_C[i] |
---|
| 342 | if h_C[i] <= 1.0e-12: |
---|
| 343 | #print 'h_C[%d]= %15.5e\n' % (i,h_C[i]) |
---|
| 344 | h_C[i] = 0.0 |
---|
| 345 | w_C[i] = z_C[i] |
---|
| 346 | #uh_C[i] = 0.0 |
---|
| 347 | |
---|
| 348 | # u_C[i] = 0.0 |
---|
| 349 | # else: |
---|
| 350 | # u_C[i] = uh_C[i]/h_C[i] |
---|
| 351 | |
---|
| 352 | h0 = 1.0e-12 |
---|
| 353 | for i in range(len(h_C)): |
---|
| 354 | if h_C[i] < 1.0e-12: |
---|
| 355 | u_C[i] = 0.0 #Could have been negative |
---|
| 356 | h_C[i] = 0.0 |
---|
| 357 | else: |
---|
| 358 | u_C[i] = uh_C[i]/(h_C[i] + h0/h_C[i]) |
---|
| 359 | #u_C[i] = uh_C[i]/h_C[i] |
---|
| 360 | |
---|
| 361 | for name in [ 'velocity', 'stage' ]: |
---|
| 362 | Q = domain.quantities[name] |
---|
| 363 | if domain.order == 1: |
---|
| 364 | Q.extrapolate_first_order() |
---|
| 365 | elif domain.order == 2: |
---|
| 366 | Q.extrapolate_second_order() |
---|
| 367 | else: |
---|
| 368 | raise 'Unknown order' |
---|
| 369 | |
---|
| 370 | w_V = domain.quantities['stage'].vertex_values |
---|
| 371 | z_V = domain.quantities['elevation'].vertex_values |
---|
| 372 | h_V = domain.quantities['height'].vertex_values |
---|
| 373 | u_V = domain.quantities['velocity'].vertex_values |
---|
| 374 | uh_V = domain.quantities['xmomentum'].vertex_values |
---|
| 375 | |
---|
| 376 | h_V[:] = w_V - z_V |
---|
| 377 | for i in range(len(h_C)): |
---|
| 378 | for j in range(2): |
---|
| 379 | if h_V[i,j] < 0.0 : |
---|
| 380 | #print 'h_V[%d,%d] = %f \n' % (i,j,h_V[i,j]) |
---|
| 381 | dh = h_V[i,j] |
---|
| 382 | h_V[i,j] = 0.0 |
---|
| 383 | w_V[i,j] = z_V[i,j] |
---|
| 384 | h_V[i,(j+1)%2] = h_V[i,(j+1)%2] + dh |
---|
| 385 | w_V[i,(j+1)%2] = w_V[i,(j+1)%2] + dh |
---|
| 386 | |
---|
| 387 | uh_V[:] = u_V * h_V |
---|
| 388 | |
---|
| 389 | |
---|
| 390 | return |
---|
| 391 | |
---|
| 392 | #--------------------------------------------------------------------------- |
---|
| 393 | def distribute_to_vertices_and_edges_limit_w_uh(domain): |
---|
| 394 | """Distribution from centroids to vertices specific to the |
---|
| 395 | shallow water wave equation. |
---|
| 396 | |
---|
| 397 | In addition, all conserved quantities get distributed as per either a |
---|
| 398 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 399 | |
---|
| 400 | Precondition: |
---|
| 401 | All quantities defined at centroids and bed elevation defined at |
---|
| 402 | vertices. |
---|
| 403 | |
---|
| 404 | Postcondition |
---|
| 405 | Conserved quantities defined at vertices |
---|
| 406 | |
---|
| 407 | """ |
---|
| 408 | |
---|
| 409 | import sys |
---|
| 410 | from Numeric import zeros, Float |
---|
| 411 | from config import epsilon, h0 |
---|
| 412 | |
---|
| 413 | N = domain.number_of_elements |
---|
| 414 | |
---|
| 415 | #Shortcuts |
---|
| 416 | Stage = domain.quantities['stage'] |
---|
| 417 | Xmom = domain.quantities['xmomentum'] |
---|
| 418 | Bed = domain.quantities['elevation'] |
---|
| 419 | Height = domain.quantities['height'] |
---|
| 420 | Velocity = domain.quantities['velocity'] |
---|
| 421 | |
---|
| 422 | #Arrays |
---|
| 423 | w_C = Stage.centroid_values |
---|
| 424 | uh_C = Xmom.centroid_values |
---|
| 425 | z_C = Bed.centroid_values |
---|
| 426 | h_C = Height.centroid_values |
---|
| 427 | u_C = Velocity.centroid_values |
---|
| 428 | |
---|
| 429 | |
---|
| 430 | for i in range(N): |
---|
| 431 | h_C[i] = w_C[i] - z_C[i] |
---|
| 432 | if h_C[i] <= 1.0e-6: |
---|
| 433 | #print 'h_C[%d]= %15.5e\n' % (i,h_C[i]) |
---|
| 434 | h_C[i] = 0.0 |
---|
| 435 | w_C[i] = z_C[i] |
---|
| 436 | uh_C[i] = 0.0 |
---|
| 437 | |
---|
| 438 | for name in [ 'stage', 'xmomentum']: |
---|
| 439 | Q = domain.quantities[name] |
---|
| 440 | if domain.order == 1: |
---|
| 441 | Q.extrapolate_first_order() |
---|
| 442 | elif domain.order == 2: |
---|
| 443 | Q.extrapolate_second_order() |
---|
| 444 | else: |
---|
| 445 | raise 'Unknown order' |
---|
| 446 | |
---|
| 447 | w_V = domain.quantities['stage'].vertex_values |
---|
| 448 | z_V = domain.quantities['elevation'].vertex_values |
---|
| 449 | h_V = domain.quantities['height'].vertex_values |
---|
| 450 | u_V = domain.quantities['velocity'].vertex_values |
---|
| 451 | uh_V = domain.quantities['xmomentum'].vertex_values |
---|
| 452 | |
---|
| 453 | h_V[:] = w_V - z_V |
---|
| 454 | |
---|
| 455 | for i in range(len(h_C)): |
---|
| 456 | for j in range(2): |
---|
| 457 | if h_V[i,j] < 0.0 : |
---|
| 458 | #print 'h_V[%d,%d] = %f \n' % (i,j,h_V[i,j]) |
---|
| 459 | dh = h_V[i,j] |
---|
| 460 | h_V[i,j] = 0.0 |
---|
| 461 | w_V[i,j] = z_V[i,j] |
---|
| 462 | h_V[i,(j+1)%2] = h_V[i,(j+1)%2] + dh |
---|
| 463 | w_V[i,(j+1)%2] = w_V[i,(j+1)%2] + dh |
---|
| 464 | u_V[i,j] = 0.0 |
---|
| 465 | if h_V[i,j] < h0: |
---|
| 466 | u_V[i,j] |
---|
| 467 | else: |
---|
| 468 | u_V[i,j] = uh_V[i,j]/(h_V[i,j] + h0/h_V[i,j]) |
---|
| 469 | |
---|
| 470 | #--------------------------------------------------------------------------- |
---|
| 471 | def distribute_to_vertices_and_edges_limit_a_d(domain): |
---|
| 472 | """Distribution from centroids to vertices specific to the |
---|
| 473 | shallow water wave equation. |
---|
| 474 | |
---|
| 475 | In addition, all conserved quantities get distributed as per either a |
---|
| 476 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 477 | |
---|
| 478 | Precondition: |
---|
| 479 | All quantities defined at centroids and bed elevation defined at |
---|
| 480 | vertices. |
---|
| 481 | |
---|
| 482 | Postcondition |
---|
| 483 | Conserved quantities defined at vertices |
---|
| 484 | |
---|
| 485 | """ |
---|
| 486 | |
---|
| 487 | import sys |
---|
| 488 | from Numeric import zeros, Float |
---|
| 489 | from config import epsilon, h0 |
---|
| 490 | |
---|
| 491 | N = domain.number_of_elements |
---|
| 492 | |
---|
| 493 | #Shortcuts |
---|
| 494 | Area = domain.quantities['area'] |
---|
| 495 | Discharge = domain.quantities['discharge'] |
---|
| 496 | Bed = domain.quantities['elevation'] |
---|
| 497 | Height = domain.quantities['height'] |
---|
| 498 | Stage = domain.quantities['stage'] |
---|
| 499 | |
---|
| 500 | #Arrays |
---|
| 501 | a_C = Area.centroid_values |
---|
| 502 | d_C = Discharge.centroid_values |
---|
| 503 | z_C = Bed.centroid_values |
---|
| 504 | h_C = Height.centroid_values |
---|
| 505 | w_C = Stage.centroid_values |
---|
| 506 | |
---|
| 507 | #work out stage |
---|
| 508 | for i in range(N): |
---|
| 509 | h_C[i] = w_C[i] - z_C[i] |
---|
| 510 | #make sure depth isn't zero |
---|
| 511 | if h_C[i] <= 1.0e-6: |
---|
| 512 | #print 'h_C[%d]= %15.5e\n' % (i,h_C[i]) |
---|
| 513 | h_C[i] = 0.0 |
---|
| 514 | w_C[i] = z_C[i] |
---|
| 515 | d_C[i] = 0.0 |
---|
| 516 | #distribute stage,discharge |
---|
| 517 | |
---|
| 518 | for name in [ 'area', 'discharge']: |
---|
| 519 | Q = domain.quantities[name] |
---|
| 520 | if domain.order == 1: |
---|
| 521 | Q.extrapolate_first_order() |
---|
| 522 | elif domain.order == 2: |
---|
| 523 | Q.extrapolate_second_order() |
---|
| 524 | else: |
---|
| 525 | raise 'Unknown order' |
---|
| 526 | |
---|
| 527 | a_V = domain.quantities['area'].vertex_values |
---|
| 528 | d_V = domain.quantities['discharge'].vertex_values |
---|
| 529 | h_V = domain.quantities['height'].vertex_values |
---|
| 530 | z_V = domain.quantities['elevation'].vertex_values |
---|
| 531 | w_V = domain.quantities['stage'].vertex_values |
---|
| 532 | #height at verticies |
---|
| 533 | h_V[:] = w_V - z_V |
---|
| 534 | |
---|
| 535 | ## for i in range(len(h_C)): |
---|
| 536 | ## for j in range(2): |
---|
| 537 | ## if h_V[i,j] < 0.0 : |
---|
| 538 | ## #print 'h_V[%d,%d] = %f \n' % (i,j,h_V[i,j]) |
---|
| 539 | ## dh = h_V[i,j] |
---|
| 540 | ## h_V[i,j] = 0.0 |
---|
| 541 | ## w_V[i,j] = z_V[i,j] |
---|
| 542 | ## h_V[i,(j+1)%2] = h_V[i,(j+1)%2] + dh |
---|
| 543 | ## w_V[i,(j+1)%2] = w_V[i,(j+1)%2] + dh |
---|
| 544 | ## u_V[i,j] = 0.0 |
---|
| 545 | ## if h_V[i,j] < h0: |
---|
| 546 | ## u_V[i,j] |
---|
| 547 | ## else: |
---|
| 548 | ## u_V[i,j] = uh_V[i,j]/(h_V[i,j] + h0/h_V[i,j] |
---|
| 549 | ## ) |
---|
| 550 | |
---|
| 551 | #-------------------------------------------------------- |
---|
| 552 | #Boundaries - specific to the shallow_water_vel_domain |
---|
| 553 | #-------------------------------------------------------- |
---|
| 554 | class Reflective_boundary(Boundary): |
---|
| 555 | """Reflective boundary returns same conserved quantities as |
---|
| 556 | those present in its neighbour volume but reflected. |
---|
| 557 | |
---|
| 558 | This class is specific to the shallow water equation as it |
---|
| 559 | works with the momentum quantities assumed to be the second |
---|
| 560 | and third conserved quantities. |
---|
| 561 | """ |
---|
| 562 | |
---|
| 563 | def __init__(self, domain = None): |
---|
| 564 | Boundary.__init__(self) |
---|
| 565 | |
---|
| 566 | if domain is None: |
---|
| 567 | msg = 'Domain must be specified for reflective boundary' |
---|
| 568 | raise msg |
---|
| 569 | |
---|
| 570 | #Handy shorthands |
---|
| 571 | self.normals = domain.normals |
---|
| 572 | self.stage = domain.quantities['stage'].vertex_values |
---|
| 573 | self.xmom = domain.quantities['xmomentum'].vertex_values |
---|
| 574 | self.bed = domain.quantities['elevation'].vertex_values |
---|
| 575 | self.height = domain.quantities['height'].vertex_values |
---|
| 576 | self.velocity = domain.quantities['velocity'].vertex_values |
---|
| 577 | |
---|
| 578 | from Numeric import zeros, Float |
---|
| 579 | #self.conserved_quantities = zeros(3, Float) |
---|
| 580 | self.evolved_quantities = zeros(5, Float) |
---|
| 581 | |
---|
| 582 | def __repr__(self): |
---|
| 583 | return 'Reflective_boundary' |
---|
| 584 | |
---|
| 585 | |
---|
| 586 | def evaluate(self, vol_id, edge_id): |
---|
| 587 | """Reflective boundaries reverses the outward momentum |
---|
| 588 | of the volume they serve. |
---|
| 589 | """ |
---|
| 590 | #Commenting out some quantities not currently keeping track of |
---|
| 591 | ## q = self.evolved_quantities |
---|
| 592 | ## q[0] = self.stage[vol_id, edge_id] |
---|
| 593 | ## q[1] = -self.xmom[vol_id, edge_id] |
---|
| 594 | ## q[2] = self.bed[vol_id, edge_id] |
---|
| 595 | ## q[3] = self.height[vol_id, edge_id] |
---|
| 596 | ## q[4] = -self.stage[stage_id, stage_id] |
---|
| 597 | |
---|
| 598 | #print "In Reflective q ",q |
---|
| 599 | |
---|
| 600 | |
---|
| 601 | return q |
---|
| 602 | |
---|
| 603 | class Dirichlet_boundary(Boundary): |
---|
| 604 | """Dirichlet boundary returns constant values for the |
---|
| 605 | conserved quantities |
---|
| 606 | """ |
---|
| 607 | |
---|
| 608 | |
---|
| 609 | def __init__(self, evolved_quantities=None): |
---|
| 610 | Boundary.__init__(self) |
---|
| 611 | |
---|
| 612 | if evolved_quantities is None: |
---|
| 613 | msg = 'Must specify one value for each evolved quantity' |
---|
| 614 | raise msg |
---|
| 615 | |
---|
| 616 | from Numeric import array, Float |
---|
| 617 | self.evolved_quantities=array(evolved_quantities).astype(Float) |
---|
| 618 | |
---|
| 619 | def __repr__(self): |
---|
| 620 | return 'Dirichlet boundary (%s)' %self.evolved_quantities |
---|
| 621 | |
---|
| 622 | def evaluate(self, vol_id=None, edge_id=None): |
---|
| 623 | return self.evolved_quantities |
---|
| 624 | |
---|
| 625 | #-------------------------------------------------------- |
---|
| 626 | #Boundaries for channel - specific to the channel domain |
---|
| 627 | #-------------------------------------------------------- |
---|
| 628 | class Reflective_boundary(Boundary): |
---|
| 629 | """Reflective boundary returns same conserved quantities as |
---|
| 630 | those present in its neighbour volume but reflected. |
---|
| 631 | |
---|
| 632 | This class is specific to the shallow water equation as it |
---|
| 633 | works with the momentum quantities assumed to be the second |
---|
| 634 | and third conserved quantities. |
---|
| 635 | """ |
---|
| 636 | |
---|
| 637 | def __init__(self, domain = None): |
---|
| 638 | Boundary.__init__(self) |
---|
| 639 | |
---|
| 640 | if domain is None: |
---|
| 641 | msg = 'Domain must be specified for reflective boundary' |
---|
| 642 | raise msg |
---|
| 643 | |
---|
| 644 | #Handy shorthands |
---|
| 645 | self.normals = domain.normals |
---|
| 646 | self.area = domain.quantities['area'].vertex_values |
---|
| 647 | self.discharge = domain.quantities['discharge'].vertex_values |
---|
| 648 | self.bed = domain.quantities['elevation'].vertex_values |
---|
| 649 | self.height = domain.quantities['height'].vertex_values |
---|
| 650 | self.stage = domain.quantities['stage'].vertex_values |
---|
| 651 | |
---|
| 652 | from Numeric import zeros, Float |
---|
| 653 | #self.conserved_quantities = zeros(3, Float) |
---|
| 654 | self.evolved_quantities = zeros(5, Float) |
---|
| 655 | |
---|
| 656 | def __repr__(self): |
---|
| 657 | return 'Reflective_boundary' |
---|
| 658 | |
---|
| 659 | |
---|
| 660 | def evaluate(self, vol_id, edge_id): |
---|
| 661 | """Reflective boundaries reverses the outward momentum |
---|
| 662 | of the volume they serve. |
---|
| 663 | """ |
---|
| 664 | |
---|
| 665 | q = self.evolved_quantities |
---|
| 666 | q[0] = self.area[vol_id, edge_id] |
---|
| 667 | q[1] = -self.discharge[vol_id, edge_id] |
---|
| 668 | q[2] = self.bed[vol_id, edge_id] |
---|
| 669 | q[3] = self.height[vol_id, edge_id] |
---|
| 670 | q[4] = self.stage[vol_id, edge_id] |
---|
| 671 | |
---|
| 672 | #print "In Reflective q ",q |
---|
| 673 | |
---|
| 674 | |
---|
| 675 | return q |
---|
| 676 | |
---|
| 677 | class Dirichlet_boundary(Boundary): |
---|
| 678 | """Dirichlet boundary returns constant values for the |
---|
| 679 | conserved quantities |
---|
| 680 | """ |
---|
| 681 | |
---|
| 682 | |
---|
| 683 | def __init__(self, evolved_quantities=None): |
---|
| 684 | Boundary.__init__(self) |
---|
| 685 | |
---|
| 686 | if evolved_quantities is None: |
---|
| 687 | msg = 'Must specify one value for each evolved quantity' |
---|
| 688 | raise msg |
---|
| 689 | |
---|
| 690 | from Numeric import array, Float |
---|
| 691 | self.evolved_quantities=array(evolved_quantities).astype(Float) |
---|
| 692 | |
---|
| 693 | def __repr__(self): |
---|
| 694 | return 'Dirichlet boundary (%s)' %self.evolved_quantities |
---|
| 695 | |
---|
| 696 | def evaluate(self, vol_id=None, edge_id=None): |
---|
| 697 | return self.evolved_quantities |
---|
| 698 | |
---|
| 699 | #---------------------------- |
---|
| 700 | #Standard forcing terms: |
---|
| 701 | #--------------------------- |
---|
| 702 | def gravity(domain): |
---|
| 703 | """Apply gravitational pull in the presence of bed slope |
---|
| 704 | """ |
---|
| 705 | |
---|
| 706 | from util import gradient |
---|
| 707 | from Numeric import zeros, Float, array, sum |
---|
| 708 | |
---|
| 709 | |
---|
| 710 | |
---|
| 711 | Area = domain.quantities['area'] |
---|
| 712 | Discharge = domain.quantities['discharge'] |
---|
| 713 | Elevation = domain.quantities['elevation'] |
---|
| 714 | Height = domain.quantities['height'] |
---|
| 715 | Stage = domain.quantities['stage'] |
---|
| 716 | |
---|
| 717 | discharge_ud = Discharge.explicit_update |
---|
| 718 | #stage_ud = Stage.explicit_update |
---|
| 719 | |
---|
| 720 | |
---|
| 721 | #h = Stage.vertex_values - Elevation.vertex_values |
---|
| 722 | h = Height.vertex_values |
---|
| 723 | b = Elevation.vertex_values |
---|
| 724 | w = Stage.vertex_values |
---|
| 725 | |
---|
| 726 | x = domain.get_vertex_coordinates() |
---|
| 727 | g = domain.g |
---|
| 728 | |
---|
| 729 | for k in range(domain.number_of_elements): |
---|
| 730 | avg_h = 0.5*(h[k,0] + h[k,1]) |
---|
| 731 | |
---|
| 732 | #Compute bed slope |
---|
| 733 | x0, x1 = x[k,:] |
---|
| 734 | b0, b1 = b[k,:] |
---|
| 735 | bx = gradient(x0, x1, b0, b1) |
---|
| 736 | |
---|
| 737 | #Update momentum (explicit update is reset to source values) |
---|
| 738 | discharge_ud[k] += -g*bx*avg_h |
---|
| 739 | #stage_ud[k] = 0.0 |
---|
| 740 | |
---|
| 741 | |
---|
| 742 | def manning_friction(domain): |
---|
| 743 | """Apply (Manning) friction to water momentum |
---|
| 744 | """ |
---|
| 745 | |
---|
| 746 | from math import sqrt |
---|
| 747 | |
---|
| 748 | w = domain.quantities['stage'].centroid_values |
---|
| 749 | z = domain.quantities['elevation'].centroid_values |
---|
| 750 | h = w-z |
---|
| 751 | |
---|
| 752 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 753 | #vh = domain.quantities['ymomentum'].centroid_values |
---|
| 754 | eta = domain.quantities['friction'].centroid_values |
---|
| 755 | |
---|
| 756 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 757 | #ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
| 758 | |
---|
| 759 | N = domain.number_of_elements |
---|
| 760 | eps = domain.minimum_allowed_height |
---|
| 761 | g = domain.g |
---|
| 762 | |
---|
| 763 | for k in range(N): |
---|
| 764 | if eta[k] >= eps: |
---|
| 765 | if h[k] >= eps: |
---|
| 766 | #S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
| 767 | S = -g * eta[k]**2 * uh[k] |
---|
| 768 | S /= h[k]**(7.0/3) |
---|
| 769 | |
---|
| 770 | #Update momentum |
---|
| 771 | xmom_update[k] += S*uh[k] |
---|
| 772 | #ymom_update[k] += S*vh[k] |
---|
| 773 | |
---|
| 774 | def linear_friction(domain): |
---|
| 775 | """Apply linear friction to water momentum |
---|
| 776 | |
---|
| 777 | Assumes quantity: 'linear_friction' to be present |
---|
| 778 | """ |
---|
| 779 | |
---|
| 780 | from math import sqrt |
---|
| 781 | |
---|
| 782 | w = domain.quantities['stage'].centroid_values |
---|
| 783 | z = domain.quantities['elevation'].centroid_values |
---|
| 784 | h = w-z |
---|
| 785 | |
---|
| 786 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 787 | tau = domain.quantities['linear_friction'].centroid_values |
---|
| 788 | |
---|
| 789 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 790 | |
---|
| 791 | N = domain.number_of_elements |
---|
| 792 | eps = domain.minimum_allowed_height |
---|
| 793 | |
---|
| 794 | for k in range(N): |
---|
| 795 | if tau[k] >= eps: |
---|
| 796 | if h[k] >= eps: |
---|
| 797 | S = -tau[k]/h[k] |
---|
| 798 | |
---|
| 799 | #Update momentum |
---|
| 800 | xmom_update[k] += S*uh[k] |
---|
| 801 | |
---|
| 802 | |
---|
| 803 | |
---|
| 804 | def check_forcefield(f): |
---|
| 805 | """Check that f is either |
---|
| 806 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
| 807 | and that it returns an array or a list of same length |
---|
| 808 | as x and y |
---|
| 809 | 2: a scalar |
---|
| 810 | """ |
---|
| 811 | |
---|
| 812 | from Numeric import ones, Float, array |
---|
| 813 | |
---|
| 814 | |
---|
| 815 | if callable(f): |
---|
| 816 | #N = 3 |
---|
| 817 | N = 2 |
---|
| 818 | #x = ones(3, Float) |
---|
| 819 | #y = ones(3, Float) |
---|
| 820 | x = ones(2, Float) |
---|
| 821 | #y = ones(2, Float) |
---|
| 822 | |
---|
| 823 | try: |
---|
| 824 | #q = f(1.0, x=x, y=y) |
---|
| 825 | q = f(1.0, x=x) |
---|
| 826 | except Exception, e: |
---|
| 827 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
| 828 | #FIXME: Reconsider this semantics |
---|
| 829 | raise msg |
---|
| 830 | |
---|
| 831 | try: |
---|
| 832 | q = array(q).astype(Float) |
---|
| 833 | except: |
---|
| 834 | msg = 'Return value from vector function %s could ' %f |
---|
| 835 | msg += 'not be converted into a Numeric array of floats.\n' |
---|
| 836 | msg += 'Specified function should return either list or array.' |
---|
| 837 | raise msg |
---|
| 838 | |
---|
| 839 | #Is this really what we want? |
---|
| 840 | msg = 'Return vector from function %s ' %f |
---|
| 841 | msg += 'must have same lenght as input vectors' |
---|
| 842 | assert len(q) == N, msg |
---|
| 843 | |
---|
| 844 | else: |
---|
| 845 | try: |
---|
| 846 | f = float(f) |
---|
| 847 | except: |
---|
| 848 | msg = 'Force field %s must be either a scalar' %f |
---|
| 849 | msg += ' or a vector function' |
---|
| 850 | raise msg |
---|
| 851 | return f |
---|
| 852 | |
---|