1 | #include "Python.h" |
---|
2 | #include "Numeric/arrayobject.h" |
---|
3 | #include "math.h" |
---|
4 | #include <stdio.h> |
---|
5 | const double pi = 3.14159265358979; |
---|
6 | |
---|
7 | |
---|
8 | // Shared code snippets |
---|
9 | #include "util_ext.h" |
---|
10 | |
---|
11 | |
---|
12 | /* double max(double a, double b) { */ |
---|
13 | /* double z; */ |
---|
14 | /* z=(a>b)?a:b; */ |
---|
15 | /* return z;} */ |
---|
16 | |
---|
17 | /* double min(double a, double b) { */ |
---|
18 | /* double z; */ |
---|
19 | /* z=(a<b)?a:b; */ |
---|
20 | /* return z;} */ |
---|
21 | |
---|
22 | |
---|
23 | // Function to obtain speed from momentum and depth. |
---|
24 | // This is used by flux functions |
---|
25 | // Input parameters uh and h may be modified by this function. |
---|
26 | double _compute_speed(double *uh, |
---|
27 | double *h, |
---|
28 | double epsilon, |
---|
29 | double h0) { |
---|
30 | |
---|
31 | double u; |
---|
32 | |
---|
33 | if (*h < epsilon) { |
---|
34 | *h = 0.0; //Could have been negative |
---|
35 | u = 0.0; |
---|
36 | } else { |
---|
37 | u = *uh/(*h + h0/ *h); |
---|
38 | } |
---|
39 | |
---|
40 | |
---|
41 | // Adjust momentum to be consistent with speed |
---|
42 | *uh = u * *h; |
---|
43 | |
---|
44 | return u; |
---|
45 | } |
---|
46 | |
---|
47 | //------------------------------------------------------------- |
---|
48 | // New vel based code |
---|
49 | //------------------------------------------------------------- |
---|
50 | //Innermost flux function (using w=z+h) |
---|
51 | int _flux_function_vel(double *q_left, double *q_right, |
---|
52 | double normals, double g, double epsilon, double h0, |
---|
53 | double *edgeflux, double *max_speed) { |
---|
54 | |
---|
55 | int i; |
---|
56 | double flux_left[2], flux_right[2]; |
---|
57 | double w_left, h_left, uh_left, z_left, u_left, soundspeed_left; |
---|
58 | double w_right, h_right, uh_right, z_right, u_right, soundspeed_right; |
---|
59 | double z, s_max, s_min, denom; |
---|
60 | |
---|
61 | |
---|
62 | w_left = q_left[0]; |
---|
63 | uh_left = q_left[1]*normals; |
---|
64 | z_left = q_left[2]; |
---|
65 | h_left = q_left[3]; |
---|
66 | u_left = q_left[4]*normals; |
---|
67 | |
---|
68 | /* printf("w_left = %f \n",w_left); */ |
---|
69 | /* printf("uh_left = %f \n",uh_left); */ |
---|
70 | /* printf("z_left = %f \n",z_left); */ |
---|
71 | /* printf("h_left = %f \n",h_left); */ |
---|
72 | /* printf("u_left = %f \n",u_left); */ |
---|
73 | |
---|
74 | w_right = q_right[0]; |
---|
75 | uh_right = q_right[1]*normals; |
---|
76 | z_right = q_right[2]; |
---|
77 | h_right = q_right[3]; |
---|
78 | u_right = q_right[4]*normals; |
---|
79 | |
---|
80 | z = (z_left+z_right)/2.0; |
---|
81 | |
---|
82 | soundspeed_left = sqrt(g*h_left); |
---|
83 | soundspeed_right = sqrt(g*h_right); |
---|
84 | |
---|
85 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right); |
---|
86 | if (s_max < 0.0) s_max = 0.0; |
---|
87 | |
---|
88 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right); |
---|
89 | if (s_min > 0.0) s_min = 0.0; |
---|
90 | |
---|
91 | |
---|
92 | // Flux formulas |
---|
93 | flux_left[0] = u_left*h_left; |
---|
94 | flux_left[1] = u_left*u_left*h_left + 0.5*g*h_left*h_left; |
---|
95 | |
---|
96 | flux_right[0] = u_right*h_right; |
---|
97 | flux_right[1] = u_right*u_right*h_right + 0.5*g*h_right*h_right; |
---|
98 | |
---|
99 | // Flux computation |
---|
100 | denom = s_max-s_min; |
---|
101 | if (denom < epsilon) { |
---|
102 | for (i=0; i<2; i++) edgeflux[i] = 0.0; |
---|
103 | *max_speed = 0.0; |
---|
104 | } else { |
---|
105 | edgeflux[0] = s_max*flux_left[0] - s_min*flux_right[0]; |
---|
106 | edgeflux[0] += s_max*s_min*(w_right-w_left); |
---|
107 | edgeflux[0] /= denom; |
---|
108 | edgeflux[1] = s_max*flux_left[1] - s_min*flux_right[1]; |
---|
109 | edgeflux[1] += s_max*s_min*(uh_right-uh_left); |
---|
110 | edgeflux[1] /= denom; |
---|
111 | edgeflux[1] *= normals; |
---|
112 | |
---|
113 | // Maximal wavespeed |
---|
114 | *max_speed = max(fabs(s_max), fabs(s_min)); |
---|
115 | } |
---|
116 | return 0; |
---|
117 | } |
---|
118 | |
---|
119 | // Computational function for flux computation |
---|
120 | double _compute_fluxes_vel_ext(double cfl, |
---|
121 | double timestep, |
---|
122 | double epsilon, |
---|
123 | double g, |
---|
124 | double h0, |
---|
125 | long* neighbours, |
---|
126 | long* neighbour_vertices, |
---|
127 | double* normals, |
---|
128 | double* areas, |
---|
129 | double* stage_edge_values, |
---|
130 | double* xmom_edge_values, |
---|
131 | double* bed_edge_values, |
---|
132 | double* height_edge_values, |
---|
133 | double* velocity_edge_values, |
---|
134 | double* stage_boundary_values, |
---|
135 | double* xmom_boundary_values, |
---|
136 | double* bed_boundary_values, |
---|
137 | double* height_boundary_values, |
---|
138 | double* velocity_boundary_values, |
---|
139 | double* stage_explicit_update, |
---|
140 | double* xmom_explicit_update, |
---|
141 | int number_of_elements, |
---|
142 | double* max_speed_array) { |
---|
143 | |
---|
144 | double flux[2], ql[5], qr[5], edgeflux[2]; |
---|
145 | double max_speed, normal; |
---|
146 | int k, i, ki, n, m, nm=0; |
---|
147 | |
---|
148 | //printf("Inside _comp\n"); |
---|
149 | |
---|
150 | for (k=0; k<number_of_elements; k++) { |
---|
151 | flux[0] = 0.0; |
---|
152 | flux[1] = 0.0; |
---|
153 | //printf("k = %d\n",k); |
---|
154 | |
---|
155 | for (i=0; i<2; i++) { |
---|
156 | ki = k*2+i; |
---|
157 | |
---|
158 | ql[0] = stage_edge_values[ki]; |
---|
159 | ql[1] = xmom_edge_values[ki]; |
---|
160 | ql[2] = bed_edge_values[ki]; |
---|
161 | ql[3] = height_edge_values[ki]; |
---|
162 | ql[4] = velocity_edge_values[ki]; |
---|
163 | |
---|
164 | n = neighbours[ki]; |
---|
165 | if (n<0) { |
---|
166 | m = -n-1; |
---|
167 | qr[0] = stage_boundary_values[m]; |
---|
168 | qr[1] = xmom_boundary_values[m]; |
---|
169 | qr[2] = bed_boundary_values[m]; |
---|
170 | qr[3] = height_boundary_values[m]; |
---|
171 | qr[4] = velocity_boundary_values[m]; |
---|
172 | } else { |
---|
173 | m = neighbour_vertices[ki]; |
---|
174 | nm = n*2+m; |
---|
175 | qr[0] = stage_edge_values[nm]; |
---|
176 | qr[1] = xmom_edge_values[nm]; |
---|
177 | qr[2] = bed_edge_values[nm]; |
---|
178 | qr[3] = height_edge_values[nm]; |
---|
179 | qr[4] = velocity_edge_values[nm]; |
---|
180 | } |
---|
181 | |
---|
182 | normal = normals[ki]; |
---|
183 | _flux_function_vel(ql, qr, normal, g, epsilon, h0, edgeflux, &max_speed); |
---|
184 | flux[0] -= edgeflux[0]; |
---|
185 | flux[1] -= edgeflux[1]; |
---|
186 | |
---|
187 | // Update timestep based on edge i and possibly neighbour n |
---|
188 | if (max_speed > epsilon) { |
---|
189 | // Original CFL calculation |
---|
190 | |
---|
191 | timestep = min(timestep, 0.5*cfl*areas[k]/max_speed); |
---|
192 | if (n>=0) { |
---|
193 | timestep = min(timestep, 0.5*cfl*areas[n]/max_speed); |
---|
194 | } |
---|
195 | } |
---|
196 | } // End edge i (and neighbour n) |
---|
197 | flux[0] /= areas[k]; |
---|
198 | stage_explicit_update[k] = flux[0]; |
---|
199 | flux[1] /= areas[k]; |
---|
200 | xmom_explicit_update[k] = flux[1]; |
---|
201 | |
---|
202 | //Keep track of maximal speeds |
---|
203 | max_speed_array[k]=max_speed; |
---|
204 | } |
---|
205 | return timestep; |
---|
206 | } |
---|
207 | |
---|
208 | //------------------------------------------------------------- |
---|
209 | // Old code |
---|
210 | //------------------------------------------------------------ |
---|
211 | //Innermost flux function (using w=z+h) |
---|
212 | int _flux_function(double *q_left, double *q_right, |
---|
213 | double z_left, double z_right, |
---|
214 | double normals, double g, double epsilon, double h0, |
---|
215 | double *edgeflux, double *max_speed) { |
---|
216 | |
---|
217 | int i; |
---|
218 | double ql[2], qr[2], flux_left[2], flux_right[2]; |
---|
219 | double z, w_left, h_left, uh_left, soundspeed_left, u_left; |
---|
220 | double w_right, h_right, uh_right, soundspeed_right, u_right; |
---|
221 | double s_max, s_min, denom; |
---|
222 | |
---|
223 | //printf("h0 = %f \n",h0); |
---|
224 | ql[0] = q_left[0]; |
---|
225 | ql[1] = q_left[1]; |
---|
226 | ql[1] = ql[1]*normals; |
---|
227 | |
---|
228 | qr[0] = q_right[0]; |
---|
229 | qr[1] = q_right[1]; |
---|
230 | qr[1] = qr[1]*normals; |
---|
231 | |
---|
232 | z = (z_left+z_right)/2.0; |
---|
233 | |
---|
234 | //w_left = ql[0]; |
---|
235 | //h_left = w_left-z; |
---|
236 | //uh_left = ql[1]; |
---|
237 | |
---|
238 | |
---|
239 | |
---|
240 | // Compute speeds in x-direction |
---|
241 | w_left = ql[0]; |
---|
242 | h_left = w_left-z; |
---|
243 | uh_left = ql[1]; |
---|
244 | |
---|
245 | u_left = _compute_speed(&uh_left, &h_left, epsilon, h0); |
---|
246 | |
---|
247 | w_right = qr[0]; |
---|
248 | h_right = w_right-z; |
---|
249 | uh_right = qr[1]; |
---|
250 | |
---|
251 | u_right = _compute_speed(&uh_right, &h_right, epsilon, h0); |
---|
252 | |
---|
253 | soundspeed_left = sqrt(g*h_left); |
---|
254 | soundspeed_right = sqrt(g*h_right); |
---|
255 | |
---|
256 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right); |
---|
257 | if (s_max < 0.0) s_max = 0.0; |
---|
258 | |
---|
259 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right); |
---|
260 | if (s_min > 0.0) s_min = 0.0; |
---|
261 | |
---|
262 | |
---|
263 | // Flux formulas |
---|
264 | flux_left[0] = u_left*h_left; |
---|
265 | flux_left[1] = u_left*uh_left + 0.5*g*h_left*h_left; |
---|
266 | |
---|
267 | flux_right[0] = u_right*h_right; |
---|
268 | flux_right[1] = u_right*uh_right + 0.5*g*h_right*h_right; |
---|
269 | |
---|
270 | // Flux computation |
---|
271 | denom = s_max-s_min; |
---|
272 | if (denom < epsilon) { |
---|
273 | for (i=0; i<2; i++) edgeflux[i] = 0.0; |
---|
274 | *max_speed = 0.0; |
---|
275 | } else { |
---|
276 | edgeflux[0] = s_max*flux_left[0] - s_min*flux_right[0]; |
---|
277 | edgeflux[0] += s_max*s_min*(qr[0]-ql[0]); |
---|
278 | edgeflux[0] /= denom; |
---|
279 | edgeflux[1] = s_max*flux_left[1] - s_min*flux_right[1]; |
---|
280 | edgeflux[1] += s_max*s_min*(qr[1]-ql[1]); |
---|
281 | edgeflux[1] /= denom; |
---|
282 | edgeflux[1] *= normals; |
---|
283 | |
---|
284 | // Maximal wavespeed |
---|
285 | *max_speed = max(fabs(s_max), fabs(s_min)); |
---|
286 | } |
---|
287 | return 0; |
---|
288 | } |
---|
289 | |
---|
290 | |
---|
291 | |
---|
292 | |
---|
293 | // Computational function for flux computation |
---|
294 | double _compute_fluxes_ext( |
---|
295 | double cfl, |
---|
296 | double timestep, |
---|
297 | double epsilon, |
---|
298 | double g, |
---|
299 | double h0, |
---|
300 | long* neighbours, |
---|
301 | long* neighbour_vertices, |
---|
302 | double* normals, |
---|
303 | double* areas, |
---|
304 | double* stage_edge_values, |
---|
305 | double* xmom_edge_values, |
---|
306 | double* bed_edge_values, |
---|
307 | double* stage_boundary_values, |
---|
308 | double* xmom_boundary_values, |
---|
309 | double* stage_explicit_update, |
---|
310 | double* xmom_explicit_update, |
---|
311 | int number_of_elements, |
---|
312 | double* max_speed_array) { |
---|
313 | |
---|
314 | double flux[2], ql[2], qr[2], edgeflux[2]; |
---|
315 | double zl, zr, max_speed, normal; |
---|
316 | int k, i, ki, n, m, nm=0; |
---|
317 | |
---|
318 | |
---|
319 | for (k=0; k<number_of_elements; k++) { |
---|
320 | flux[0] = 0.0; |
---|
321 | flux[1] = 0.0; |
---|
322 | |
---|
323 | for (i=0; i<2; i++) { |
---|
324 | ki = k*2+i; |
---|
325 | |
---|
326 | ql[0] = stage_edge_values[ki]; |
---|
327 | ql[1] = xmom_edge_values[ki]; |
---|
328 | zl = bed_edge_values[ki]; |
---|
329 | |
---|
330 | n = neighbours[ki]; |
---|
331 | if (n<0) { |
---|
332 | m = -n-1; |
---|
333 | qr[0] = stage_boundary_values[m]; |
---|
334 | qr[1] = xmom_boundary_values[m]; |
---|
335 | zr = zl; |
---|
336 | } else { |
---|
337 | m = neighbour_vertices[ki]; |
---|
338 | nm = n*2+m; |
---|
339 | qr[0] = stage_edge_values[nm]; |
---|
340 | qr[1] = xmom_edge_values[nm]; |
---|
341 | zr = bed_edge_values[nm]; |
---|
342 | } |
---|
343 | |
---|
344 | normal = normals[ki]; |
---|
345 | _flux_function(ql, qr, zl, zr, normal, g, epsilon, h0, edgeflux, &max_speed); |
---|
346 | flux[0] -= edgeflux[0]; |
---|
347 | flux[1] -= edgeflux[1]; |
---|
348 | |
---|
349 | // Update timestep based on edge i and possibly neighbour n |
---|
350 | if (max_speed > epsilon) { |
---|
351 | // Original CFL calculation |
---|
352 | |
---|
353 | timestep = min(timestep, 0.5*cfl*areas[k]/max_speed); |
---|
354 | if (n>=0) { |
---|
355 | timestep = min(timestep, 0.5*cfl*areas[n]/max_speed); |
---|
356 | } |
---|
357 | } |
---|
358 | } // End edge i (and neighbour n) |
---|
359 | flux[0] /= areas[k]; |
---|
360 | stage_explicit_update[k] = flux[0]; |
---|
361 | flux[1] /= areas[k]; |
---|
362 | xmom_explicit_update[k] = flux[1]; |
---|
363 | |
---|
364 | //Keep track of maximal speeds |
---|
365 | max_speed_array[k]=max_speed; |
---|
366 | } |
---|
367 | return timestep; |
---|
368 | } |
---|
369 | |
---|
370 | //========================================================================= |
---|
371 | // Python Glue |
---|
372 | //========================================================================= |
---|
373 | PyObject *compute_fluxes_ext(PyObject *self, PyObject *args) { |
---|
374 | |
---|
375 | PyObject |
---|
376 | *domain, |
---|
377 | *stage, |
---|
378 | *xmom, |
---|
379 | *bed; |
---|
380 | |
---|
381 | PyArrayObject |
---|
382 | *neighbours, |
---|
383 | *neighbour_vertices, |
---|
384 | *normals, |
---|
385 | *areas, |
---|
386 | *stage_vertex_values, |
---|
387 | *xmom_vertex_values, |
---|
388 | *bed_vertex_values, |
---|
389 | *stage_boundary_values, |
---|
390 | *xmom_boundary_values, |
---|
391 | *stage_explicit_update, |
---|
392 | *xmom_explicit_update, |
---|
393 | *max_speed_array; |
---|
394 | |
---|
395 | double timestep, epsilon, g, h0, cfl; |
---|
396 | int number_of_elements; |
---|
397 | |
---|
398 | |
---|
399 | // Convert Python arguments to C |
---|
400 | if (!PyArg_ParseTuple(args, "dOOOO", |
---|
401 | ×tep, |
---|
402 | &domain, |
---|
403 | &stage, |
---|
404 | &xmom, |
---|
405 | &bed)) { |
---|
406 | PyErr_SetString(PyExc_RuntimeError, "comp_flux_vel_ext.c: compute_fluxes_ext could not parse input"); |
---|
407 | return NULL; |
---|
408 | } |
---|
409 | |
---|
410 | |
---|
411 | epsilon = get_python_double(domain,"epsilon"); |
---|
412 | g = get_python_double(domain,"g"); |
---|
413 | h0 = get_python_double(domain,"h0"); |
---|
414 | cfl = get_python_double(domain,"CFL"); |
---|
415 | |
---|
416 | |
---|
417 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
418 | neighbour_vertices= get_consecutive_array(domain, "neighbour_vertices"); |
---|
419 | normals = get_consecutive_array(domain, "normals"); |
---|
420 | areas = get_consecutive_array(domain, "areas"); |
---|
421 | max_speed_array = get_consecutive_array(domain, "max_speed_array"); |
---|
422 | |
---|
423 | stage_vertex_values = get_consecutive_array(stage, "vertex_values"); |
---|
424 | xmom_vertex_values = get_consecutive_array(xmom, "vertex_values"); |
---|
425 | bed_vertex_values = get_consecutive_array(bed, "vertex_values"); |
---|
426 | |
---|
427 | stage_boundary_values = get_consecutive_array(stage, "boundary_values"); |
---|
428 | xmom_boundary_values = get_consecutive_array(xmom, "boundary_values"); |
---|
429 | |
---|
430 | |
---|
431 | stage_explicit_update = get_consecutive_array(stage, "explicit_update"); |
---|
432 | xmom_explicit_update = get_consecutive_array(xmom, "explicit_update"); |
---|
433 | |
---|
434 | |
---|
435 | |
---|
436 | number_of_elements = stage_vertex_values -> dimensions[0]; |
---|
437 | |
---|
438 | |
---|
439 | |
---|
440 | // Call underlying flux computation routine and update |
---|
441 | // the explicit update arrays |
---|
442 | timestep = _compute_fluxes_ext( |
---|
443 | cfl, |
---|
444 | timestep, |
---|
445 | epsilon, |
---|
446 | g, |
---|
447 | h0, |
---|
448 | (long*) neighbours -> data, |
---|
449 | (long*) neighbour_vertices -> data, |
---|
450 | (double*) normals -> data, |
---|
451 | (double*) areas -> data, |
---|
452 | (double*) stage_vertex_values -> data, |
---|
453 | (double*) xmom_vertex_values -> data, |
---|
454 | (double*) bed_vertex_values -> data, |
---|
455 | (double*) stage_boundary_values -> data, |
---|
456 | (double*) xmom_boundary_values -> data, |
---|
457 | (double*) stage_explicit_update -> data, |
---|
458 | (double*) xmom_explicit_update -> data, |
---|
459 | number_of_elements, |
---|
460 | (double*) max_speed_array -> data); |
---|
461 | |
---|
462 | |
---|
463 | Py_DECREF(neighbours); |
---|
464 | Py_DECREF(neighbour_vertices); |
---|
465 | Py_DECREF(normals); |
---|
466 | Py_DECREF(areas); |
---|
467 | Py_DECREF(stage_vertex_values); |
---|
468 | Py_DECREF(xmom_vertex_values); |
---|
469 | Py_DECREF(bed_vertex_values); |
---|
470 | Py_DECREF(stage_boundary_values); |
---|
471 | Py_DECREF(xmom_boundary_values); |
---|
472 | Py_DECREF(stage_explicit_update); |
---|
473 | Py_DECREF(xmom_explicit_update); |
---|
474 | Py_DECREF(max_speed_array); |
---|
475 | |
---|
476 | |
---|
477 | |
---|
478 | |
---|
479 | // Return updated flux timestep |
---|
480 | return Py_BuildValue("d", timestep); |
---|
481 | } |
---|
482 | |
---|
483 | |
---|
484 | //------------------------------------------------ |
---|
485 | // New velocity based compute fluxes |
---|
486 | //------------------------------------------------ |
---|
487 | PyObject *compute_fluxes_vel_ext(PyObject *self, PyObject *args) { |
---|
488 | |
---|
489 | PyObject |
---|
490 | *domain, |
---|
491 | *stage, |
---|
492 | *xmom, |
---|
493 | *bed, |
---|
494 | *height, |
---|
495 | *velocity; |
---|
496 | |
---|
497 | PyArrayObject |
---|
498 | *neighbours, |
---|
499 | *neighbour_vertices, |
---|
500 | *normals, |
---|
501 | *areas, |
---|
502 | *stage_vertex_values, |
---|
503 | *xmom_vertex_values, |
---|
504 | *bed_vertex_values, |
---|
505 | *height_vertex_values, |
---|
506 | *velocity_vertex_values, |
---|
507 | *stage_boundary_values, |
---|
508 | *xmom_boundary_values, |
---|
509 | *bed_boundary_values, |
---|
510 | *height_boundary_values, |
---|
511 | *velocity_boundary_values, |
---|
512 | *stage_explicit_update, |
---|
513 | *xmom_explicit_update, |
---|
514 | *max_speed_array; |
---|
515 | |
---|
516 | double timestep, epsilon, g, h0, cfl; |
---|
517 | int number_of_elements; |
---|
518 | |
---|
519 | |
---|
520 | // Convert Python arguments to C |
---|
521 | if (!PyArg_ParseTuple(args, "dOOOOOO", |
---|
522 | ×tep, |
---|
523 | &domain, |
---|
524 | &stage, |
---|
525 | &xmom, |
---|
526 | &bed, |
---|
527 | &height, |
---|
528 | &velocity)) { |
---|
529 | PyErr_SetString(PyExc_RuntimeError, "comp_flux_vel_ext.c: compute_fluxes_vel_ext could not parse input"); |
---|
530 | printf("comp_flux_vel_ext.c: compute_fluxes_vel_ext could not parse input"); |
---|
531 | return NULL; |
---|
532 | } |
---|
533 | |
---|
534 | |
---|
535 | epsilon = get_python_double(domain,"epsilon"); |
---|
536 | g = get_python_double(domain,"g"); |
---|
537 | h0 = get_python_double(domain,"h0"); |
---|
538 | cfl = get_python_double(domain,"CFL"); |
---|
539 | |
---|
540 | |
---|
541 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
542 | neighbour_vertices= get_consecutive_array(domain, "neighbour_vertices"); |
---|
543 | normals = get_consecutive_array(domain, "normals"); |
---|
544 | areas = get_consecutive_array(domain, "areas"); |
---|
545 | max_speed_array = get_consecutive_array(domain, "max_speed_array"); |
---|
546 | |
---|
547 | stage_vertex_values = get_consecutive_array(stage, "vertex_values"); |
---|
548 | xmom_vertex_values = get_consecutive_array(xmom, "vertex_values"); |
---|
549 | bed_vertex_values = get_consecutive_array(bed, "vertex_values"); |
---|
550 | height_vertex_values = get_consecutive_array(height, "vertex_values"); |
---|
551 | velocity_vertex_values = get_consecutive_array(velocity, "vertex_values"); |
---|
552 | |
---|
553 | stage_boundary_values = get_consecutive_array(stage, "boundary_values"); |
---|
554 | xmom_boundary_values = get_consecutive_array(xmom, "boundary_values"); |
---|
555 | bed_boundary_values = get_consecutive_array(bed, "boundary_values"); |
---|
556 | height_boundary_values = get_consecutive_array(height, "boundary_values"); |
---|
557 | velocity_boundary_values = get_consecutive_array(velocity, "boundary_values"); |
---|
558 | |
---|
559 | |
---|
560 | stage_explicit_update = get_consecutive_array(stage, "explicit_update"); |
---|
561 | xmom_explicit_update = get_consecutive_array(xmom, "explicit_update"); |
---|
562 | |
---|
563 | number_of_elements = stage_vertex_values -> dimensions[0]; |
---|
564 | |
---|
565 | |
---|
566 | //printf("comp_flux_vel 1 N = %d %15.5e %15.5e %15.5e %15.5e %15.5e \n",number_of_elements,cfl,timestep,epsilon,g,h0); |
---|
567 | |
---|
568 | |
---|
569 | |
---|
570 | // Call underlying flux computation routine and update |
---|
571 | // the explicit update arrays |
---|
572 | timestep = _compute_fluxes_vel_ext(cfl, |
---|
573 | timestep, |
---|
574 | epsilon, |
---|
575 | g, |
---|
576 | h0, |
---|
577 | (long*) neighbours -> data, |
---|
578 | (long*) neighbour_vertices -> data, |
---|
579 | (double*) normals -> data, |
---|
580 | (double*) areas -> data, |
---|
581 | (double*) stage_vertex_values -> data, |
---|
582 | (double*) xmom_vertex_values -> data, |
---|
583 | (double*) bed_vertex_values -> data, |
---|
584 | (double*) height_vertex_values -> data, |
---|
585 | (double*) velocity_vertex_values -> data, |
---|
586 | (double*) stage_boundary_values -> data, |
---|
587 | (double*) xmom_boundary_values -> data, |
---|
588 | (double*) bed_boundary_values -> data, |
---|
589 | (double*) height_boundary_values -> data, |
---|
590 | (double*) velocity_boundary_values -> data, |
---|
591 | (double*) stage_explicit_update -> data, |
---|
592 | (double*) xmom_explicit_update -> data, |
---|
593 | number_of_elements, |
---|
594 | (double*) max_speed_array -> data); |
---|
595 | |
---|
596 | //printf("comp_flux_vel 2 \n"); |
---|
597 | |
---|
598 | Py_DECREF(neighbours); |
---|
599 | Py_DECREF(neighbour_vertices); |
---|
600 | Py_DECREF(normals); |
---|
601 | Py_DECREF(areas); |
---|
602 | Py_DECREF(stage_vertex_values); |
---|
603 | Py_DECREF(xmom_vertex_values); |
---|
604 | Py_DECREF(bed_vertex_values); |
---|
605 | Py_DECREF(height_vertex_values); |
---|
606 | Py_DECREF(velocity_vertex_values); |
---|
607 | Py_DECREF(stage_boundary_values); |
---|
608 | Py_DECREF(xmom_boundary_values); |
---|
609 | Py_DECREF(bed_boundary_values); |
---|
610 | Py_DECREF(height_boundary_values); |
---|
611 | Py_DECREF(velocity_boundary_values); |
---|
612 | Py_DECREF(stage_explicit_update); |
---|
613 | Py_DECREF(xmom_explicit_update); |
---|
614 | Py_DECREF(max_speed_array); |
---|
615 | |
---|
616 | //printf("comp_flux_vel 3 \n"); |
---|
617 | |
---|
618 | // Return updated flux timestep |
---|
619 | return Py_BuildValue("d", timestep); |
---|
620 | } |
---|
621 | |
---|
622 | |
---|
623 | |
---|
624 | //------------------------------- |
---|
625 | // Method table for python module |
---|
626 | //------------------------------- |
---|
627 | |
---|
628 | static struct PyMethodDef MethodTable[] = { |
---|
629 | {"compute_fluxes_ext", compute_fluxes_ext, METH_VARARGS, "Print out"}, |
---|
630 | {"compute_fluxes_vel_ext", compute_fluxes_vel_ext, METH_VARARGS, "Print out"}, |
---|
631 | {NULL, NULL} |
---|
632 | }; |
---|
633 | |
---|
634 | // Module initialisation |
---|
635 | void initcomp_flux_vel_ext(void){ |
---|
636 | Py_InitModule("comp_flux_vel_ext", MethodTable); |
---|
637 | import_array(); |
---|
638 | } |
---|