1 | import os |
---|
2 | from math import sqrt, sin, cos, pi, exp |
---|
3 | from shallow_water_domain import * |
---|
4 | from Numeric import zeros, Float |
---|
5 | #from analytic_dam_sudi import AnalyticDam |
---|
6 | |
---|
7 | h0=5.0 |
---|
8 | h1=10.0 |
---|
9 | |
---|
10 | #analytical_sol=AnalyticDam(h0,h1) |
---|
11 | |
---|
12 | """ |
---|
13 | def newLinePlot(title='Simple Plot'): |
---|
14 | import Gnuplot |
---|
15 | gg=Gnuplot.Gnuplot(persist=0) |
---|
16 | gg.title(title) |
---|
17 | gg('set data style linespoints') |
---|
18 | gg.xlabel('x') |
---|
19 | gg.ylabel('y') |
---|
20 | return gg |
---|
21 | |
---|
22 | def linePlot(gg, x1, y1, x2, y2): |
---|
23 | import Gnuplot |
---|
24 | plot1=Gnuplot.PlotItems.Data(x1.flat, y1.flat, with="linespoints") |
---|
25 | plot2=Gnuplot.PlotItems.Data(x2.flat, y2.flat, with="lines 3") |
---|
26 | gg.plot(plot1, plot2) |
---|
27 | """ |
---|
28 | |
---|
29 | |
---|
30 | print "TEST 1D-SOLUTION I" |
---|
31 | |
---|
32 | L=2000.0 |
---|
33 | N=50 |
---|
34 | |
---|
35 | cell_len=L/N |
---|
36 | |
---|
37 | points=zeros(N+1, Float) |
---|
38 | for i in range(N+1): |
---|
39 | points[i]=i*cell_len |
---|
40 | |
---|
41 | domain=Domain(points) |
---|
42 | |
---|
43 | domain.order = 2 |
---|
44 | domain.set_timestepping_method('rk2') |
---|
45 | #domain.default_time_order = 2 |
---|
46 | domain.cfl = 1.0 |
---|
47 | #domain.limiter = "vanleer" |
---|
48 | |
---|
49 | |
---|
50 | |
---|
51 | def stage(x): |
---|
52 | y=zeros(len(x), Float) |
---|
53 | for i in range(len(x)): |
---|
54 | if x[i]<=1000.0: |
---|
55 | y[i]=10.0 |
---|
56 | else: |
---|
57 | y[i]=5.0 |
---|
58 | return y |
---|
59 | |
---|
60 | def stage_perturb(x): |
---|
61 | y=zeros(len(x), Float) |
---|
62 | for i in range(len(x)): |
---|
63 | if 800.0 <= x[i] <=1200.0: |
---|
64 | y[i]=10.0 |
---|
65 | else: |
---|
66 | y[i]=5.0 |
---|
67 | return y |
---|
68 | |
---|
69 | def stage_sincos(x): |
---|
70 | y=zeros(len(x), Float) |
---|
71 | for i in range(len(x)): |
---|
72 | y[i] = 5+exp(cos(pi*x[i]*0.001))+sin(pi*x[i]*0.0005)*sin(pi*x[i]*0.0005) |
---|
73 | return y |
---|
74 | |
---|
75 | |
---|
76 | def elevation_box(x): |
---|
77 | y=zeros(len(x), Float) |
---|
78 | for i in range(len(x)): |
---|
79 | if 500.0 <= x[i] <= 1500.0: |
---|
80 | y[i] = 2.5 |
---|
81 | else: |
---|
82 | y[i] = 0.0 |
---|
83 | return y |
---|
84 | |
---|
85 | def elevation_parabol(x): |
---|
86 | y=zeros(len(x), Float) |
---|
87 | for i in range(len(x)): |
---|
88 | if 1400.0 <= x[i] <= 1600.0: |
---|
89 | y[i] = 1.25*(1+cos(0.01*pi*(x[i]-500))) |
---|
90 | else: |
---|
91 | y[i] = 0.0 |
---|
92 | return y |
---|
93 | |
---|
94 | |
---|
95 | def elevation_sincos(x): |
---|
96 | y=zeros(len(x), Float) |
---|
97 | for i in range(len(x)): |
---|
98 | y[i] = sin(pi*x[i]*0.0005)*sin(pi*x[i]*0.0005) |
---|
99 | return y |
---|
100 | |
---|
101 | |
---|
102 | |
---|
103 | def xmom_sincos(x): |
---|
104 | y=zeros(len(x), Float) |
---|
105 | for i in range(len(x)): |
---|
106 | y[i] = sin(cos(pi*x[i]*0.001)) |
---|
107 | return y |
---|
108 | |
---|
109 | domain.set_quantity('stage',stage_perturb) |
---|
110 | domain.set_quantity('elevation', elevation_box) |
---|
111 | #domain.set_quantity('xmomentum', xmom_sincos) |
---|
112 | #domain.order=domain.default_order |
---|
113 | print "domain order", domain.order |
---|
114 | |
---|
115 | domain.set_boundary({'exterior':Reflective_boundary(domain)}) |
---|
116 | |
---|
117 | X=domain.vertices |
---|
118 | C=domain.centroids |
---|
119 | #plot1x=newLinePlot("Height") |
---|
120 | #plot2x=newLinePlot("Momentum") |
---|
121 | |
---|
122 | |
---|
123 | import time |
---|
124 | t0=time.time() |
---|
125 | yieldstep=10.0 #30.0 |
---|
126 | finaltime=10.0 #20.0 |
---|
127 | print "integral", domain.quantities['stage'].get_integral() |
---|
128 | for t in domain.evolve(yieldstep=yieldstep, finaltime=finaltime): |
---|
129 | domain.write_time() |
---|
130 | print "integral", domain.quantities['stage'].get_integral() |
---|
131 | if t>0.0: |
---|
132 | HeightQ=domain.quantities['stage'].vertex_values |
---|
133 | MomentumQ=domain.quantities['xmomentum'].vertex_values |
---|
134 | ElevationQ=domain.quantities['elevation'].vertex_values |
---|
135 | #h, uh=analytical_sol(X.flat, domain.time) |
---|
136 | #linePlot(plot1x, X, HeightQ, X, h) |
---|
137 | #linePlot(plot2x, X, MomentumQ, X, uh) |
---|
138 | #print "press return" |
---|
139 | #pass |
---|
140 | |
---|
141 | from pylab import clf,plot,title,xlabel,ylabel,legend,savefig,show,hold,subplot,ion |
---|
142 | #print 'Test1' |
---|
143 | ion() |
---|
144 | hold(False) |
---|
145 | #clf() |
---|
146 | #print 'test 2' |
---|
147 | plot1 = subplot(211) |
---|
148 | #print 'test 3' |
---|
149 | |
---|
150 | |
---|
151 | #print 'Test4' |
---|
152 | |
---|
153 | plot(X,ElevationQ,X,HeightQ) |
---|
154 | plot1.set_ylim([-1.0,11.0]) |
---|
155 | xlabel('Position') |
---|
156 | ylabel('Stage') |
---|
157 | #legend( ('Bed Elevation', 'Numerical Solution'), |
---|
158 | # 'upper right', shadow=False) |
---|
159 | |
---|
160 | |
---|
161 | #legend(('Analytical Solution', 'Numerical Solution'), |
---|
162 | # 'lower right', shadow=False) |
---|
163 | plot2 = subplot(212) |
---|
164 | plot(X,MomentumQ) |
---|
165 | #plot2.set_ylim([-1,1]) |
---|
166 | |
---|
167 | #legend( ('Numerical Solution', 'for momentum'), |
---|
168 | # 'upper right', shadow=False) |
---|
169 | |
---|
170 | xlabel('Position') |
---|
171 | ylabel('Xmomentum') |
---|
172 | |
---|
173 | file = "dam_h_" |
---|
174 | #file += str(number_of_cells[i]) |
---|
175 | file += ".eps" |
---|
176 | #savefig(file) |
---|
177 | #show() |
---|
178 | |
---|
179 | print 'That took %.2f seconds'%(time.time()-t0) |
---|
180 | |
---|
181 | raw_input("Press any key") |
---|
182 | |
---|