[5845] | 1 | import os |
---|
| 2 | from math import sqrt, pi, sin, cos |
---|
| 3 | from shallow_water_vel_domain import * |
---|
| 4 | from Numeric import allclose, array, zeros, ones, Float, take, sqrt |
---|
| 5 | from config import g, epsilon |
---|
| 6 | |
---|
| 7 | def analytic_cannal(C,t): |
---|
| 8 | N = len(C) |
---|
| 9 | u = zeros(N,Float) ## water velocity |
---|
| 10 | h = zeros(N,Float) ## water depth |
---|
| 11 | x = C |
---|
| 12 | g = 9.81 |
---|
| 13 | ## Define Basin Bathymetry |
---|
| 14 | z_b = zeros(N,Float) ## elevation of basin |
---|
| 15 | z = zeros(N,Float) ## elevation of water surface |
---|
| 16 | z_infty = 10.0 ## max equilibrium water depth at lowest point. |
---|
| 17 | L_x = 2500.0 ## width of channel |
---|
| 18 | A0 = 0.5*L_x ## determines amplitudes of oscillations |
---|
| 19 | omega = sqrt(2*g*z_infty)/L_x ## angular frequency of osccilation |
---|
| 20 | for i in range(N): |
---|
| 21 | z_b[i] = z_infty*(x[i]**2/L_x**2) |
---|
| 22 | u[i] = -A0*omega*sin(omega*t) |
---|
| 23 | z[i] = z_infty+2*A0*z_infty/L_x*cos(omega*t)*(x[i]/L_x-0.5*A0/(L_x)*cos(omega*t)) |
---|
| 24 | h = z-z_b |
---|
| 25 | T = 2.0*pi/omega |
---|
| 26 | return u,h,z,z_b, T |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | L_x = 2500.0 # Length of channel (m) |
---|
| 30 | N = 400 # Number of compuational cells |
---|
| 31 | cell_len = 4*L_x/N # Origin = 0.0 |
---|
| 32 | |
---|
| 33 | points = zeros(N+1,Float) |
---|
| 34 | for i in range(N+1): |
---|
| 35 | points[i] = -2*L_x +i*cell_len |
---|
| 36 | |
---|
| 37 | def stage(x): |
---|
| 38 | z_infty = 10.0 ## max equilibrium water depth at lowest point. |
---|
| 39 | L_x = 2500.0 ## width of channel |
---|
| 40 | A0 = 0.5*L_x ## determines amplitudes of oscillations |
---|
| 41 | omega = sqrt(2*g*z_infty)/L_x ## angular frequency of osccilation |
---|
| 42 | t=0.0 |
---|
| 43 | y = zeros(len(x),Float) |
---|
| 44 | for i in range(len(x)): |
---|
| 45 | y[i] = z_infty+2*A0*z_infty/L_x*cos(omega*t)*(x[i]/L_x-0.5*A0/(L_x)*cos(omega*t)) |
---|
| 46 | #y[i] = 12.0 |
---|
| 47 | return y |
---|
| 48 | |
---|
| 49 | def elevation(x): |
---|
| 50 | N = len(x) |
---|
| 51 | z_infty = 10.0 |
---|
| 52 | z = zeros(N,Float) |
---|
| 53 | L_x = 2500.0 |
---|
| 54 | A0 = 0.5*L_x |
---|
| 55 | omega = sqrt(2*g*z_infty)/L_x |
---|
| 56 | for i in range(N): |
---|
| 57 | z[i] = z_infty*(x[i]**2/L_x**2) |
---|
| 58 | return z |
---|
| 59 | |
---|
| 60 | def height(x): |
---|
| 61 | z_infty = 10.0 ## max equilibrium water depth at lowest point. |
---|
| 62 | L_x = 2500.0 ## width of channel |
---|
| 63 | A0 = 0.5*L_x ## determines amplitudes of oscillations |
---|
| 64 | omega = sqrt(2*g*z_infty)/L_x ## angular frequency of osccilation |
---|
| 65 | t=0.0 |
---|
| 66 | y = zeros(len(x),Float) |
---|
| 67 | for i in range(len(x)): |
---|
| 68 | y[i] = max(z_infty+2*A0*z_infty/L_x*cos(omega*t)*(x[i]/L_x-0.5*A0/(L_x)*cos(omega*t))-z_infty*(x[i]**2/L_x**2),0.0) |
---|
| 69 | return y |
---|
| 70 | |
---|
| 71 | domain = Domain(points) |
---|
| 72 | domain.order = 2 |
---|
| 73 | domain.set_timestepping_method('euler') |
---|
| 74 | domain.set_CFL(1.0) |
---|
| 75 | domain.beta = 1.0 |
---|
| 76 | domain.set_limiter("vanleer") |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | domain.set_quantity('stage', stage) |
---|
| 80 | domain.set_quantity('elevation',elevation) |
---|
| 81 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
| 82 | |
---|
| 83 | X = domain.vertices |
---|
| 84 | u,h,z,z_b,T = analytic_cannal(X.flat,domain.time) |
---|
| 85 | print 'T = ',T |
---|
| 86 | |
---|
| 87 | yieldstep = finaltime = 10.0 #T/2.0 |
---|
| 88 | StageQ = domain.quantities['stage'].vertex_values |
---|
| 89 | XmomQ = domain.quantities['xmomentum'].vertex_values |
---|
| 90 | |
---|
| 91 | import time |
---|
| 92 | t0 = time.time() |
---|
| 93 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
| 94 | domain.write_time() |
---|
| 95 | print "integral", domain.quantities['stage'].get_integral() |
---|
| 96 | if t>0.0: |
---|
| 97 | |
---|
| 98 | x = X.flat |
---|
| 99 | print 'domain.time=',domain.time |
---|
| 100 | |
---|
| 101 | w_V = domain.quantities['stage'].vertex_values.flat |
---|
| 102 | uh_V = domain.quantities['xmomentum'].vertex_values.flat |
---|
| 103 | u_V = domain.quantities['velocity'].vertex_values.flat |
---|
| 104 | h_V = domain.quantities['height'].vertex_values.flat |
---|
| 105 | |
---|
| 106 | u,h,z,z_b,T = analytic_cannal(x,domain.time) |
---|
| 107 | w = z |
---|
| 108 | for k in range(len(h)): |
---|
| 109 | if h[k] < 0.0: |
---|
| 110 | h[k] = 0.0 |
---|
| 111 | w[k] = z_b[k] |
---|
| 112 | |
---|
| 113 | from pylab import plot,title,xlabel,ylabel,legend,savefig,show,hold,subplot |
---|
| 114 | hold(False) |
---|
| 115 | |
---|
| 116 | #print 'size X',X.shape |
---|
| 117 | #print 'size w',w.shape |
---|
| 118 | signh = (h_V>0) |
---|
| 119 | |
---|
| 120 | plot1 = subplot(311) |
---|
| 121 | #plot(x,w, x,w_V, x,z_b) |
---|
| 122 | plot(x,signh) |
---|
| 123 | plot1.set_xlim([-6000,6000]) |
---|
| 124 | xlabel('Position') |
---|
| 125 | ylabel('Stage') |
---|
| 126 | legend(('Analytic Solution', 'Numerical Solution', 'Bed'), |
---|
| 127 | 'upper center', shadow=True) |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | plot2 = subplot(312) |
---|
| 131 | plot(x,u*h,x,uh_V) |
---|
| 132 | #plot2.set_ylim([-1,25]) |
---|
| 133 | xlabel('Position') |
---|
| 134 | ylabel('Xmomentum') |
---|
| 135 | |
---|
| 136 | print u_V |
---|
| 137 | |
---|
| 138 | plot3 = subplot(313) |
---|
| 139 | plot(x,u, x,u_V) |
---|
| 140 | #plot2.set_ylim([-1,25]) |
---|
| 141 | xlabel('Position') |
---|
| 142 | ylabel('Velocity') |
---|
| 143 | show() |
---|
| 144 | raw_input("Press the return key!") |
---|