[6453] | 1 | import os |
---|
| 2 | from math import sqrt, pow, pi |
---|
| 3 | from channel_domain_Ab import * |
---|
| 4 | from Numeric import allclose, array, zeros, ones, Float, take, sqrt |
---|
| 5 | from config import g, epsilon |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | print "Radial Dam Break Test" |
---|
| 9 | |
---|
| 10 | # Define functions for initial quantities |
---|
| 11 | |
---|
| 12 | def initial_area(x): |
---|
| 13 | y=zeros(len(x),Float) |
---|
| 14 | for i in range (len(x)): |
---|
| 15 | if x[i]<=40: |
---|
| 16 | y[i]=10*(x[i]*pi*2) |
---|
| 17 | else: |
---|
| 18 | y[i]=1*(x[i]*pi*2) |
---|
| 19 | return y |
---|
| 20 | |
---|
| 21 | |
---|
| 22 | def width(x): |
---|
| 23 | return 2*pi*x |
---|
| 24 | |
---|
| 25 | import time |
---|
| 26 | |
---|
| 27 | # Set final time and yield time for simulation |
---|
| 28 | finaltime = 2.0 |
---|
| 29 | yieldstep = finaltime |
---|
| 30 | |
---|
| 31 | # Length of channel (m) |
---|
| 32 | L = 100.0 |
---|
| 33 | # Define the number of cells |
---|
| 34 | number_of_cells = [100] |
---|
| 35 | |
---|
| 36 | # Define cells for finite volume and their size |
---|
| 37 | N = int(number_of_cells[0]) |
---|
| 38 | print "Evaluating domain with %d cells" %N |
---|
| 39 | cell_len = L/N # Origin = 0.0 |
---|
| 40 | points = zeros(N+1,Float) |
---|
| 41 | |
---|
| 42 | # Define the centroid points |
---|
| 43 | for j in range(N+1): |
---|
| 44 | points[j] = j*cell_len |
---|
| 45 | |
---|
| 46 | # Create domain with centroid points as defined above |
---|
| 47 | domain = Domain(points) |
---|
| 48 | |
---|
| 49 | # Set initial values of quantities - default to zero |
---|
| 50 | domain.set_quantity('area', initial_area) |
---|
| 51 | domain.set_quantity('width',width) |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | # Set boundry type, order, timestepping method and limiter |
---|
| 55 | domain.set_boundary({'exterior':Reflective_boundary(domain)}) |
---|
| 56 | domain.order = 2 |
---|
| 57 | domain.set_timestepping_method('rk2') |
---|
| 58 | domain.set_CFL(1.0) |
---|
| 59 | domain.set_limiter("vanleer") |
---|
| 60 | #domain.h0=0.0001 |
---|
| 61 | |
---|
| 62 | # Start timer |
---|
| 63 | t0 = time.time() |
---|
| 64 | |
---|
| 65 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
| 66 | domain.write_time() |
---|
| 67 | |
---|
| 68 | N = float(N) |
---|
| 69 | HeightC = domain.quantities['height'].centroid_values |
---|
| 70 | DischargeC = domain.quantities['discharge'].centroid_values |
---|
| 71 | C = domain.centroids |
---|
| 72 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
| 73 | X = domain.vertices |
---|
| 74 | HeightQ = domain.quantities['height'].vertex_values |
---|
| 75 | VelocityQ = domain.quantities['velocity'].vertex_values |
---|
| 76 | x = X.flat |
---|
| 77 | z = domain.quantities['elevation'].vertex_values.flat |
---|
| 78 | stage=HeightQ.flat+z |
---|
| 79 | |
---|
| 80 | ## ################# REPEAT ABOVE WITH MORE CELLS |
---|
| 81 | ## # Set final time and yield time for simulation |
---|
| 82 | ## finaltime2 = 2.0 |
---|
| 83 | ## yieldstep2 = finaltime2 |
---|
| 84 | |
---|
| 85 | ## # Length of channel (m) |
---|
| 86 | ## L2 = 100.0 |
---|
| 87 | ## # Define the number of cells |
---|
| 88 | ## number_of_cells2 = [100] |
---|
| 89 | |
---|
| 90 | ## # Define cells for finite volume and their size |
---|
| 91 | ## N2 = int(number_of_cells2[0]) |
---|
| 92 | ## print "Evaluating domain with %d cells" %N2 |
---|
| 93 | ## cell_len2 = L2/N2 # Origin = 0.0 |
---|
| 94 | ## points2 = zeros(N2+1,Float) |
---|
| 95 | |
---|
| 96 | ## # Define the centroid points |
---|
| 97 | ## for j in range(N2+1): |
---|
| 98 | ## points2[j] = j*cell_len2 |
---|
| 99 | |
---|
| 100 | ## # Create domain with centroid points as defined above |
---|
| 101 | ## domain2 = Domain(points2) |
---|
| 102 | |
---|
| 103 | ## # Set initial values of quantities - default to zero |
---|
| 104 | ## domain2.set_quantity('area', initial_area) |
---|
| 105 | ## domain2.set_quantity('width',width) |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | ## # Set boundry type, order, timestepping method and limiter |
---|
| 109 | ## domain2.set_boundary({'exterior':Reflective_boundary(domain2)}) |
---|
| 110 | ## domain2.order = 2 |
---|
| 111 | ## domain2.set_timestepping_method('rk2') |
---|
| 112 | ## domain2.set_CFL(1.0) |
---|
| 113 | ## domain2.set_limiter("vanleer") |
---|
| 114 | ## #domain.h0=0.0001 |
---|
| 115 | |
---|
| 116 | ## # Start timer |
---|
| 117 | ## t02 = time.time() |
---|
| 118 | |
---|
| 119 | ## for t in domain2.evolve(yieldstep = yieldstep2, finaltime = finaltime2): |
---|
| 120 | ## domain2.write_time() |
---|
| 121 | |
---|
| 122 | ## N2 = float(N2) |
---|
| 123 | ## HeightC2 = domain2.quantities['height'].centroid_values |
---|
| 124 | ## DischargeC2 = domain2.quantities['discharge'].centroid_values |
---|
| 125 | ## C2 = domain2.centroids |
---|
| 126 | ## print 'That took %.2f seconds' %(time.time()-t02) |
---|
| 127 | ## X2 = domain2.vertices |
---|
| 128 | ## HeightQ2 = domain2.quantities['height'].vertex_values |
---|
| 129 | ## VelocityQ2 = domain2.quantities['velocity'].vertex_values |
---|
| 130 | ## x2 = X2.flat |
---|
| 131 | ## z2 = domain2.quantities['elevation'].vertex_values.flat |
---|
| 132 | ## stage2=HeightQ2.flat+z2 |
---|
| 133 | |
---|
| 134 | ## ################# REPEAT ABOVE |
---|
| 135 | |
---|
| 136 | from pylab import plot,title,xlabel,ylabel,legend,savefig,show,hold,subplot |
---|
| 137 | import pickle |
---|
| 138 | f=open('highresdam.txt','r') |
---|
| 139 | ## Data=[[x,stage],[x,VelocityQ.flat]] |
---|
| 140 | ## pickle.dump(Data,f) |
---|
| 141 | ## f.close() |
---|
| 142 | [[x2,stage2],[x3,Velocity2]]=pickle.load(f) |
---|
| 143 | |
---|
| 144 | |
---|
| 145 | hold(False) |
---|
| 146 | plot1 = subplot(211) |
---|
| 147 | |
---|
| 148 | plot(x2,stage2,x,stage,'.') |
---|
| 149 | |
---|
| 150 | plot1.set_ylim([-1,11]) |
---|
| 151 | xlabel('Position') |
---|
| 152 | ylabel('Stage') |
---|
| 153 | legend(('Analytical Solution', 'Numerical Solution'), |
---|
| 154 | 'upper right', shadow=True) |
---|
| 155 | plot2 = subplot(212) |
---|
| 156 | plot(x3,Velocity2,x,VelocityQ.flat,'.') |
---|
| 157 | plot2.set_ylim([-10,10]) |
---|
| 158 | |
---|
| 159 | xlabel('Position') |
---|
| 160 | ylabel('Velocity') |
---|
| 161 | |
---|
| 162 | show() |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | |
---|