[6453] | 1 | """Class Domain - |
---|
| 2 | 1D interval domains for finite-volume computations of |
---|
| 3 | the shallow water wave equation. |
---|
| 4 | |
---|
| 5 | This module contains a specialisation of class Domain from module domain.py |
---|
| 6 | consisting of methods specific to the Shallow Water Wave Equation |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | U_t + E_x = S |
---|
| 10 | |
---|
| 11 | where |
---|
| 12 | |
---|
| 13 | U = [w, uh] |
---|
| 14 | E = [uh, u^2h + gh^2/2] |
---|
| 15 | S represents source terms forcing the system |
---|
| 16 | (e.g. gravity, friction, wind stress, ...) |
---|
| 17 | |
---|
| 18 | and _t, _x, _y denote the derivative with respect to t, x and y respectiely. |
---|
| 19 | |
---|
| 20 | The quantities are |
---|
| 21 | |
---|
| 22 | symbol variable name explanation |
---|
| 23 | x x horizontal distance from origin [m] |
---|
| 24 | z elevation elevation of bed on which flow is modelled [m] |
---|
| 25 | h height water height above z [m] |
---|
| 26 | w stage absolute water level, w = z+h [m] |
---|
| 27 | u speed in the x direction [m/s] |
---|
| 28 | uh xmomentum momentum in the x direction [m^2/s] |
---|
| 29 | |
---|
| 30 | eta mannings friction coefficient [to appear] |
---|
| 31 | nu wind stress coefficient [to appear] |
---|
| 32 | |
---|
| 33 | The conserved quantities are w, uh |
---|
| 34 | |
---|
| 35 | For details see e.g. |
---|
| 36 | Christopher Zoppou and Stephen Roberts, |
---|
| 37 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
| 38 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
| 39 | |
---|
| 40 | |
---|
| 41 | John Jakeman, Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
| 42 | Geoscience Australia, 2006 |
---|
| 43 | """ |
---|
| 44 | |
---|
| 45 | |
---|
| 46 | from domain import * |
---|
| 47 | Generic_Domain = Domain #Rename |
---|
| 48 | |
---|
| 49 | #Shallow water domain |
---|
| 50 | class Domain(Generic_Domain): |
---|
| 51 | |
---|
| 52 | def __init__(self, coordinates, boundary = None, tagged_elements = None): |
---|
| 53 | |
---|
| 54 | conserved_quantities = ['stage', 'xmomentum'] |
---|
| 55 | evolved_quantities = ['stage', 'xmomentum', 'elevation', 'height', 'velocity'] |
---|
| 56 | other_quantities = ['friction'] |
---|
| 57 | Generic_Domain.__init__(self, |
---|
| 58 | coordinates = coordinates, |
---|
| 59 | boundary = boundary, |
---|
| 60 | conserved_quantities = conserved_quantities, |
---|
| 61 | evolved_quantities = evolved_quantities, |
---|
| 62 | other_quantities = other_quantities, |
---|
| 63 | tagged_elements = tagged_elements) |
---|
| 64 | |
---|
| 65 | from config import minimum_allowed_height, g, h0 |
---|
| 66 | self.minimum_allowed_height = minimum_allowed_height |
---|
| 67 | self.g = g |
---|
| 68 | self.h0 = h0 |
---|
| 69 | |
---|
| 70 | #forcing terms not included in 1d domain ?WHy? |
---|
| 71 | self.forcing_terms.append(gravity) |
---|
| 72 | #self.forcing_terms.append(manning_friction) |
---|
| 73 | #print "\nI have Removed forcing terms line 64 1dsw" |
---|
| 74 | |
---|
| 75 | #Realtime visualisation |
---|
| 76 | self.visualiser = None |
---|
| 77 | self.visualise = False |
---|
| 78 | self.visualise_color_stage = False |
---|
| 79 | self.visualise_stage_range = 1.0 |
---|
| 80 | self.visualise_timer = True |
---|
| 81 | self.visualise_range_z = None |
---|
| 82 | |
---|
| 83 | #Stored output |
---|
| 84 | self.store = True |
---|
| 85 | self.format = 'sww' |
---|
| 86 | self.smooth = True |
---|
| 87 | |
---|
| 88 | #Evolve parametrs |
---|
| 89 | self.cfl = 1.0 |
---|
| 90 | |
---|
| 91 | #Reduction operation for get_vertex_values |
---|
| 92 | from util import mean |
---|
| 93 | self.reduction = mean |
---|
| 94 | #self.reduction = min #Looks better near steep slopes |
---|
| 95 | |
---|
| 96 | self.quantities_to_be_stored = ['stage','xmomentum'] |
---|
| 97 | |
---|
| 98 | self.__doc__ = 'shallow_water_domain' |
---|
| 99 | |
---|
| 100 | |
---|
| 101 | def set_quantities_to_be_stored(self, q): |
---|
| 102 | """Specify which quantities will be stored in the sww file. |
---|
| 103 | |
---|
| 104 | q must be either: |
---|
| 105 | - the name of a quantity |
---|
| 106 | - a list of quantity names |
---|
| 107 | - None |
---|
| 108 | |
---|
| 109 | In the two first cases, the named quantities will be stored at each |
---|
| 110 | yieldstep |
---|
| 111 | (This is in addition to the quantities elevation and friction) |
---|
| 112 | If q is None, storage will be switched off altogether. |
---|
| 113 | """ |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | if q is None: |
---|
| 117 | self.quantities_to_be_stored = [] |
---|
| 118 | self.store = False |
---|
| 119 | return |
---|
| 120 | |
---|
| 121 | if isinstance(q, basestring): |
---|
| 122 | q = [q] # Turn argument into a list |
---|
| 123 | |
---|
| 124 | #Check correcness |
---|
| 125 | for quantity_name in q: |
---|
| 126 | msg = 'Quantity %s is not a valid conserved quantity' %quantity_name |
---|
| 127 | assert quantity_name in self.conserved_quantities, msg |
---|
| 128 | |
---|
| 129 | self.quantities_to_be_stored = q |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | def initialise_visualiser(self,scale_z=1.0,rect=None): |
---|
| 133 | #Realtime visualisation |
---|
| 134 | if self.visualiser is None: |
---|
| 135 | from realtime_visualisation_new import Visualiser |
---|
| 136 | self.visualiser = Visualiser(self,scale_z,rect) |
---|
| 137 | self.visualiser.setup['elevation']=True |
---|
| 138 | self.visualiser.updating['stage']=True |
---|
| 139 | self.visualise = True |
---|
| 140 | if self.visualise_color_stage == True: |
---|
| 141 | self.visualiser.coloring['stage'] = True |
---|
| 142 | self.visualiser.qcolor['stage'] = (0.0, 0.0, 0.8) |
---|
| 143 | print 'initialise visualiser' |
---|
| 144 | print self.visualiser.setup |
---|
| 145 | print self.visualiser.updating |
---|
| 146 | |
---|
| 147 | def check_integrity(self): |
---|
| 148 | Generic_Domain.check_integrity(self) |
---|
| 149 | #Check that we are solving the shallow water wave equation |
---|
| 150 | |
---|
| 151 | msg = 'First conserved quantity must be "stage"' |
---|
| 152 | assert self.conserved_quantities[0] == 'stage', msg |
---|
| 153 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
| 154 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
| 155 | |
---|
| 156 | def extrapolate_second_order_sw(self): |
---|
| 157 | #Call correct module function |
---|
| 158 | #(either from this module or C-extension) |
---|
| 159 | extrapolate_second_order_sw(self) |
---|
| 160 | |
---|
| 161 | def compute_fluxes(self): |
---|
| 162 | #Call correct module function |
---|
| 163 | #(either from this module or C-extension) |
---|
| 164 | compute_fluxes_C(self) |
---|
| 165 | |
---|
| 166 | def compute_timestep(self): |
---|
| 167 | #Call correct module function |
---|
| 168 | compute_timestep(self) |
---|
| 169 | |
---|
| 170 | def distribute_to_vertices_and_edges(self): |
---|
| 171 | #Call correct module function |
---|
| 172 | #(either from this module or C-extension) |
---|
| 173 | distribute_to_vertices_and_edges(self) |
---|
| 174 | |
---|
| 175 | def evolve(self, yieldstep = None, finaltime = None, duration = None, |
---|
| 176 | skip_initial_step = False): |
---|
| 177 | """Specialisation of basic evolve method from parent class |
---|
| 178 | """ |
---|
| 179 | |
---|
| 180 | #Call basic machinery from parent class |
---|
| 181 | for t in Generic_Domain.evolve(self, yieldstep, finaltime,duration, |
---|
| 182 | skip_initial_step): |
---|
| 183 | |
---|
| 184 | #Pass control on to outer loop for more specific actions |
---|
| 185 | yield(t) |
---|
| 186 | |
---|
| 187 | def initialise_storage(self): |
---|
| 188 | """Create and initialise self.writer object for storing data. |
---|
| 189 | Also, save x and bed elevation |
---|
| 190 | """ |
---|
| 191 | |
---|
| 192 | import data_manager |
---|
| 193 | |
---|
| 194 | #Initialise writer |
---|
| 195 | self.writer = data_manager.get_dataobject(self, mode = 'w') |
---|
| 196 | |
---|
| 197 | #Store vertices and connectivity |
---|
| 198 | self.writer.store_connectivity() |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | def store_timestep(self, name): |
---|
| 202 | """Store named quantity and time. |
---|
| 203 | |
---|
| 204 | Precondition: |
---|
| 205 | self.write has been initialised |
---|
| 206 | """ |
---|
| 207 | self.writer.store_timestep(name) |
---|
| 208 | |
---|
| 209 | |
---|
| 210 | #=============== End of Shallow Water Domain =============================== |
---|
| 211 | |
---|
| 212 | #Rotation of momentum vector |
---|
| 213 | def rotate(q, normal, direction = 1): |
---|
| 214 | """Rotate the momentum component q (q[1], q[2]) |
---|
| 215 | from x,y coordinates to coordinates based on normal vector. |
---|
| 216 | |
---|
| 217 | If direction is negative the rotation is inverted. |
---|
| 218 | |
---|
| 219 | Input vector is preserved |
---|
| 220 | |
---|
| 221 | This function is specific to the shallow water wave equation |
---|
| 222 | """ |
---|
| 223 | |
---|
| 224 | from Numeric import zeros, Float |
---|
| 225 | |
---|
| 226 | assert len(q) == 3,\ |
---|
| 227 | 'Vector of conserved quantities must have length 3'\ |
---|
| 228 | 'for 2D shallow water equation' |
---|
| 229 | |
---|
| 230 | try: |
---|
| 231 | l = len(normal) |
---|
| 232 | except: |
---|
| 233 | raise 'Normal vector must be an Numeric array' |
---|
| 234 | |
---|
| 235 | assert l == 2, 'Normal vector must have 2 components' |
---|
| 236 | |
---|
| 237 | |
---|
| 238 | n1 = normal[0] |
---|
| 239 | n2 = normal[1] |
---|
| 240 | |
---|
| 241 | r = zeros(len(q), Float) #Rotated quantities |
---|
| 242 | r[0] = q[0] #First quantity, height, is not rotated |
---|
| 243 | |
---|
| 244 | if direction == -1: |
---|
| 245 | n2 = -n2 |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | r[1] = n1*q[1] + n2*q[2] |
---|
| 249 | r[2] = -n2*q[1] + n1*q[2] |
---|
| 250 | |
---|
| 251 | return r |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | def flux_function(normal, ql, qr, zl, zr): |
---|
| 255 | """Compute fluxes between volumes for the shallow water wave equation |
---|
| 256 | cast in terms of w = h+z using the 'central scheme' as described in |
---|
| 257 | |
---|
| 258 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
| 259 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
| 260 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
| 261 | |
---|
| 262 | The implemented formula is given in equation (3.15) on page 714 |
---|
| 263 | |
---|
| 264 | Conserved quantities w, uh, are stored as elements 0 and 1 |
---|
| 265 | in the numerical vectors ql an qr. |
---|
| 266 | |
---|
| 267 | Bed elevations zl and zr. |
---|
| 268 | """ |
---|
| 269 | |
---|
| 270 | from config import g, epsilon, h0 |
---|
| 271 | from math import sqrt |
---|
| 272 | from Numeric import array |
---|
| 273 | |
---|
| 274 | #print 'ql',ql |
---|
| 275 | |
---|
| 276 | #Align momentums with x-axis |
---|
| 277 | #q_left = rotate(ql, normal, direction = 1) |
---|
| 278 | #q_right = rotate(qr, normal, direction = 1) |
---|
| 279 | q_left = ql |
---|
| 280 | q_left[1] = q_left[1]*normal |
---|
| 281 | q_right = qr |
---|
| 282 | q_right[1] = q_right[1]*normal |
---|
| 283 | |
---|
| 284 | #z = (zl+zr)/2 #Take average of field values |
---|
| 285 | z = 0.5*(zl+zr) #Take average of field values |
---|
| 286 | |
---|
| 287 | w_left = q_left[0] #w=h+z |
---|
| 288 | h_left = w_left-z |
---|
| 289 | uh_left = q_left[1] |
---|
| 290 | |
---|
| 291 | if h_left < epsilon: |
---|
| 292 | u_left = 0.0 #Could have been negative |
---|
| 293 | h_left = 0.0 |
---|
| 294 | else: |
---|
| 295 | u_left = uh_left/(h_left + h0/h_left) |
---|
| 296 | |
---|
| 297 | |
---|
| 298 | uh_left = u_left*h_left |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | w_right = q_right[0] #w=h+z |
---|
| 302 | h_right = w_right-z |
---|
| 303 | uh_right = q_right[1] |
---|
| 304 | |
---|
| 305 | if h_right < epsilon: |
---|
| 306 | u_right = 0.0 #Could have been negative |
---|
| 307 | h_right = 0.0 |
---|
| 308 | else: |
---|
| 309 | u_right = uh_right/(h_right + h0/h_right) |
---|
| 310 | |
---|
| 311 | uh_right = u_right*h_right |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | #We have got h and u at vertex, then the following is the calculation of fluxes!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 315 | soundspeed_left = sqrt(g*h_left) |
---|
| 316 | soundspeed_right = sqrt(g*h_right) |
---|
| 317 | |
---|
| 318 | #Maximal wave speed |
---|
| 319 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
| 320 | |
---|
| 321 | #Minimal wave speed |
---|
| 322 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
| 323 | |
---|
| 324 | #Flux computation |
---|
| 325 | flux_left = array([u_left*h_left, |
---|
| 326 | u_left*uh_left + 0.5*g*h_left*h_left]) |
---|
| 327 | flux_right = array([u_right*h_right, |
---|
| 328 | u_right*uh_right + 0.5*g*h_right*h_right]) |
---|
| 329 | |
---|
| 330 | denom = s_max-s_min |
---|
| 331 | if denom == 0.0: |
---|
| 332 | edgeflux = array([0.0, 0.0]) |
---|
| 333 | max_speed = 0.0 |
---|
| 334 | else: |
---|
| 335 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
| 336 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
| 337 | |
---|
| 338 | edgeflux[1] = edgeflux[1]*normal |
---|
| 339 | |
---|
| 340 | max_speed = max(abs(s_max), abs(s_min)) |
---|
| 341 | |
---|
| 342 | return edgeflux, max_speed |
---|
| 343 | # |
---|
| 344 | def compute_fluxes_python(domain): |
---|
| 345 | """ |
---|
| 346 | Compute all fluxes and the timestep suitable for all volumes |
---|
| 347 | in domain. |
---|
| 348 | |
---|
| 349 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 350 | |
---|
| 351 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 352 | Resulting flux is then scaled by area and stored in |
---|
| 353 | explicit_update for each of the three conserved quantities |
---|
| 354 | stage, xmomentum and ymomentum |
---|
| 355 | |
---|
| 356 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 357 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 358 | those is computed as the next overall timestep. |
---|
| 359 | |
---|
| 360 | Post conditions: |
---|
| 361 | domain.explicit_update is reset to computed flux values |
---|
| 362 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 363 | |
---|
| 364 | """ |
---|
| 365 | |
---|
| 366 | import sys |
---|
| 367 | from Numeric import zeros, Float |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | domain.distribute_to_vertices_and_edges() |
---|
| 371 | domain.update_boundary() |
---|
| 372 | |
---|
| 373 | N = domain.number_of_elements |
---|
| 374 | Stage = domain.quantities['stage'] |
---|
| 375 | Xmom = domain.quantities['xmomentum'] |
---|
| 376 | Bed = domain.quantities['elevation'] |
---|
| 377 | |
---|
| 378 | stage = Stage.vertex_values |
---|
| 379 | xmom = Xmom.vertex_values |
---|
| 380 | bed = Bed.vertex_values |
---|
| 381 | |
---|
| 382 | stage_bdry = Stage.boundary_values |
---|
| 383 | xmom_bdry = Xmom.boundary_values |
---|
| 384 | |
---|
| 385 | |
---|
| 386 | |
---|
| 387 | flux = zeros(2, Float) #Work array for summing up fluxes |
---|
| 388 | ql = zeros(2, Float) |
---|
| 389 | qr = zeros(2, Float) |
---|
| 390 | |
---|
| 391 | #Loop |
---|
| 392 | timestep = float(sys.maxint) |
---|
| 393 | enter = True |
---|
| 394 | for k in range(N): |
---|
| 395 | |
---|
| 396 | flux[:] = 0. #Reset work array |
---|
| 397 | #for i in range(3): |
---|
| 398 | for i in range(2): |
---|
| 399 | #Quantities inside volume facing neighbour i |
---|
| 400 | #ql[0] = stage[k, i] |
---|
| 401 | #ql[1] = xmom[k, i] |
---|
| 402 | ql = [stage[k, i], xmom[k, i]] |
---|
| 403 | zl = bed[k, i] |
---|
| 404 | |
---|
| 405 | #Quantities at neighbour on nearest face |
---|
| 406 | n = domain.neighbours[k,i] |
---|
| 407 | if n < 0: |
---|
| 408 | m = -n-1 #Convert negative flag to index |
---|
| 409 | qr[0] = stage_bdry[m] |
---|
| 410 | qr[1] = xmom_bdry[m] |
---|
| 411 | zr = zl #Extend bed elevation to boundary |
---|
| 412 | else: |
---|
| 413 | #m = domain.neighbour_edges[k,i] |
---|
| 414 | m = domain.neighbour_vertices[k,i] |
---|
| 415 | #qr = [stage[n, m], xmom[n, m], ymom[n, m]] |
---|
| 416 | qr[0] = stage[n, m] |
---|
| 417 | qr[1] = xmom[n, m] |
---|
| 418 | zr = bed[n, m] |
---|
| 419 | |
---|
| 420 | |
---|
| 421 | #Outward pointing normal vector |
---|
| 422 | normal = domain.normals[k, i] |
---|
| 423 | |
---|
| 424 | #Flux computation using provided function |
---|
| 425 | |
---|
| 426 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
| 427 | |
---|
| 428 | #print 'edgeflux', edgeflux |
---|
| 429 | |
---|
| 430 | # THIS IS THE LINE TO DEAL WITH LEFT AND RIGHT FLUXES |
---|
| 431 | # flux = edgefluxleft - edgefluxright |
---|
| 432 | flux -= edgeflux #* domain.edgelengths[k,i] |
---|
| 433 | #Update optimal_timestep |
---|
| 434 | try: |
---|
| 435 | #timestep = min(timestep, 0.5*domain.radii[k]/max_speed) |
---|
| 436 | timestep = min(timestep, domain.cfl*0.5*domain.areas[k]/max_speed) |
---|
| 437 | except ZeroDivisionError: |
---|
| 438 | pass |
---|
| 439 | |
---|
| 440 | #Normalise by area and store for when all conserved |
---|
| 441 | #quantities get updated |
---|
| 442 | flux /= domain.areas[k] |
---|
| 443 | |
---|
| 444 | Stage.explicit_update[k] = flux[0] |
---|
| 445 | Xmom.explicit_update[k] = flux[1] |
---|
| 446 | #Ymom.explicit_update[k] = flux[2] |
---|
| 447 | #print "flux cell",k,flux[0] |
---|
| 448 | |
---|
| 449 | domain.flux_timestep = timestep |
---|
| 450 | #print domain.quantities['stage'].centroid_values |
---|
| 451 | # |
---|
| 452 | def compute_timestep(domain): |
---|
| 453 | import sys |
---|
| 454 | from Numeric import zeros, Float |
---|
| 455 | |
---|
| 456 | N = domain.number_of_elements |
---|
| 457 | |
---|
| 458 | #Shortcuts |
---|
| 459 | Stage = domain.quantities['stage'] |
---|
| 460 | Xmom = domain.quantities['xmomentum'] |
---|
| 461 | Bed = domain.quantities['elevation'] |
---|
| 462 | |
---|
| 463 | stage = Stage.vertex_values |
---|
| 464 | xmom = Xmom.vertex_values |
---|
| 465 | bed = Bed.vertex_values |
---|
| 466 | |
---|
| 467 | stage_bdry = Stage.boundary_values |
---|
| 468 | xmom_bdry = Xmom.boundary_values |
---|
| 469 | |
---|
| 470 | flux = zeros(2, Float) #Work array for summing up fluxes |
---|
| 471 | ql = zeros(2, Float) |
---|
| 472 | qr = zeros(2, Float) |
---|
| 473 | |
---|
| 474 | #Loop |
---|
| 475 | timestep = float(sys.maxint) |
---|
| 476 | enter = True |
---|
| 477 | for k in range(N): |
---|
| 478 | |
---|
| 479 | flux[:] = 0. #Reset work array |
---|
| 480 | for i in range(2): |
---|
| 481 | #Quantities inside volume facing neighbour i |
---|
| 482 | ql = [stage[k, i], xmom[k, i]] |
---|
| 483 | zl = bed[k, i] |
---|
| 484 | |
---|
| 485 | #Quantities at neighbour on nearest face |
---|
| 486 | n = domain.neighbours[k,i] |
---|
| 487 | if n < 0: |
---|
| 488 | m = -n-1 #Convert negative flag to index |
---|
| 489 | qr[0] = stage_bdry[m] |
---|
| 490 | qr[1] = xmom_bdry[m] |
---|
| 491 | zr = zl #Extend bed elevation to boundary |
---|
| 492 | else: |
---|
| 493 | #m = domain.neighbour_edges[k,i] |
---|
| 494 | m = domain.neighbour_vertices[k,i] |
---|
| 495 | qr[0] = stage[n, m] |
---|
| 496 | qr[1] = xmom[n, m] |
---|
| 497 | zr = bed[n, m] |
---|
| 498 | |
---|
| 499 | |
---|
| 500 | #Outward pointing normal vector |
---|
| 501 | normal = domain.normals[k, i] |
---|
| 502 | |
---|
| 503 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
| 504 | |
---|
| 505 | #Update optimal_timestep |
---|
| 506 | try: |
---|
| 507 | timestep = min(timestep, domain.cfl*0.5*domain.areas[k]/max_speed) |
---|
| 508 | except ZeroDivisionError: |
---|
| 509 | pass |
---|
| 510 | |
---|
| 511 | domain.timestep = timestep |
---|
| 512 | |
---|
| 513 | # Compute flux definition |
---|
| 514 | def compute_fluxes_C_long(domain): |
---|
| 515 | from Numeric import zeros, Float |
---|
| 516 | import sys |
---|
| 517 | |
---|
| 518 | |
---|
| 519 | timestep = float(sys.maxint) |
---|
| 520 | #print 'timestep=',timestep |
---|
| 521 | #print 'The type of timestep is',type(timestep) |
---|
| 522 | |
---|
| 523 | epsilon = domain.epsilon |
---|
| 524 | #print 'epsilon=',epsilon |
---|
| 525 | #print 'The type of epsilon is',type(epsilon) |
---|
| 526 | |
---|
| 527 | g = domain.g |
---|
| 528 | #print 'g=',g |
---|
| 529 | #print 'The type of g is',type(g) |
---|
| 530 | |
---|
| 531 | neighbours = domain.neighbours |
---|
| 532 | #print 'neighbours=',neighbours |
---|
| 533 | #print 'The type of neighbours is',type(neighbours) |
---|
| 534 | |
---|
| 535 | neighbour_vertices = domain.neighbour_vertices |
---|
| 536 | #print 'neighbour_vertices=',neighbour_vertices |
---|
| 537 | #print 'The type of neighbour_vertices is',type(neighbour_vertices) |
---|
| 538 | |
---|
| 539 | normals = domain.normals |
---|
| 540 | #print 'normals=',normals |
---|
| 541 | #print 'The type of normals is',type(normals) |
---|
| 542 | |
---|
| 543 | areas = domain.areas |
---|
| 544 | #print 'areas=',areas |
---|
| 545 | #print 'The type of areas is',type(areas) |
---|
| 546 | |
---|
| 547 | stage_edge_values = domain.quantities['stage'].vertex_values |
---|
| 548 | #print 'stage_edge_values=',stage_edge_values |
---|
| 549 | #print 'The type of stage_edge_values is',type(stage_edge_values) |
---|
| 550 | |
---|
| 551 | xmom_edge_values = domain.quantities['xmomentum'].vertex_values |
---|
| 552 | #print 'xmom_edge_values=',xmom_edge_values |
---|
| 553 | #print 'The type of xmom_edge_values is',type(xmom_edge_values) |
---|
| 554 | |
---|
| 555 | bed_edge_values = domain.quantities['elevation'].vertex_values |
---|
| 556 | #print 'bed_edge_values=',bed_edge_values |
---|
| 557 | #print 'The type of bed_edge_values is',type(bed_edge_values) |
---|
| 558 | |
---|
| 559 | stage_boundary_values = domain.quantities['stage'].boundary_values |
---|
| 560 | #print 'stage_boundary_values=',stage_boundary_values |
---|
| 561 | #print 'The type of stage_boundary_values is',type(stage_boundary_values) |
---|
| 562 | |
---|
| 563 | xmom_boundary_values = domain.quantities['xmomentum'].boundary_values |
---|
| 564 | #print 'xmom_boundary_values=',xmom_boundary_values |
---|
| 565 | #print 'The type of xmom_boundary_values is',type(xmom_boundary_values) |
---|
| 566 | |
---|
| 567 | stage_explicit_update = domain.quantities['stage'].explicit_update |
---|
| 568 | #print 'stage_explicit_update=',stage_explicit_update |
---|
| 569 | #print 'The type of stage_explicit_update is',type(stage_explicit_update) |
---|
| 570 | |
---|
| 571 | xmom_explicit_update = domain.quantities['xmomentum'].explicit_update |
---|
| 572 | #print 'xmom_explicit_update=',xmom_explicit_update |
---|
| 573 | #print 'The type of xmom_explicit_update is',type(xmom_explicit_update) |
---|
| 574 | |
---|
| 575 | number_of_elements = len(stage_edge_values) |
---|
| 576 | #print 'number_of_elements=',number_of_elements |
---|
| 577 | #print 'The type of number_of_elements is',type(number_of_elements) |
---|
| 578 | |
---|
| 579 | max_speed_array = domain.max_speed_array |
---|
| 580 | #print 'max_speed_array=',max_speed_array |
---|
| 581 | #print 'The type of max_speed_array is',type(max_speed_array) |
---|
| 582 | |
---|
| 583 | |
---|
| 584 | from comp_flux_ext import compute_fluxes_ext |
---|
| 585 | |
---|
| 586 | domain.flux_timestep = compute_fluxes_ext(timestep, |
---|
| 587 | epsilon, |
---|
| 588 | g, |
---|
| 589 | neighbours, |
---|
| 590 | neighbour_vertices, |
---|
| 591 | normals, |
---|
| 592 | areas, |
---|
| 593 | stage_edge_values, |
---|
| 594 | xmom_edge_values, |
---|
| 595 | bed_edge_values, |
---|
| 596 | stage_boundary_values, |
---|
| 597 | xmom_boundary_values, |
---|
| 598 | stage_explicit_update, |
---|
| 599 | xmom_explicit_update, |
---|
| 600 | number_of_elements, |
---|
| 601 | max_speed_array) |
---|
| 602 | |
---|
| 603 | |
---|
| 604 | # Compute flux definition |
---|
| 605 | def compute_fluxes_C(domain): |
---|
| 606 | from Numeric import zeros, Float |
---|
| 607 | import sys |
---|
| 608 | |
---|
| 609 | |
---|
| 610 | timestep = float(sys.maxint) |
---|
| 611 | |
---|
| 612 | stage = domain.quantities['stage'] |
---|
| 613 | xmom = domain.quantities['xmomentum'] |
---|
| 614 | bed = domain.quantities['elevation'] |
---|
| 615 | height = domain.quantities['height'] |
---|
| 616 | velocity = domain.quantities['velocity'] |
---|
| 617 | |
---|
| 618 | |
---|
| 619 | from comp_flux_ext_steve import compute_fluxes_ext_short |
---|
| 620 | |
---|
| 621 | domain.flux_timestep = compute_fluxes_ext_short(timestep,domain,stage,xmom,bed,height,velocity) |
---|
| 622 | |
---|
| 623 | |
---|
| 624 | |
---|
| 625 | # ################################### |
---|
| 626 | def compute_fluxes_C_wellbalanced(domain): |
---|
| 627 | #from Numeric import zeros, Float |
---|
| 628 | #import sys |
---|
| 629 | |
---|
| 630 | |
---|
| 631 | #timestep = float(sys.maxint) |
---|
| 632 | #epsilon = domain.epsilon |
---|
| 633 | #g = domain.g |
---|
| 634 | #neighbours = domain.neighbours |
---|
| 635 | #neighbour_vertices = domain.neighbour_vertices |
---|
| 636 | #normals = domain.normals |
---|
| 637 | #areas = domain.areas |
---|
| 638 | #stage_edge_values = domain.quantities['stage'].vertex_values |
---|
| 639 | #xmom_edge_values = domain.quantities['xmomentum'].vertex_values |
---|
| 640 | #bed_edge_values = domain.quantities['elevation'].vertex_values |
---|
| 641 | #stage_boundary_values = domain.quantities['stage'].boundary_values |
---|
| 642 | #xmom_boundary_values = domain.quantities['xmomentum'].boundary_values |
---|
| 643 | #stage_explicit_update = domain.quantities['stage'].explicit_update |
---|
| 644 | #xmom_explicit_update = domain.quantities['xmomentum'].explicit_update |
---|
| 645 | #number_of_elements = len(stage_edge_values) |
---|
| 646 | #max_speed_array = domain.max_speed_array |
---|
| 647 | |
---|
| 648 | import sys |
---|
| 649 | from Numeric import zeros, Float |
---|
| 650 | |
---|
| 651 | N = domain.number_of_elements |
---|
| 652 | timestep = float(sys.maxint) |
---|
| 653 | epsilon = domain.epsilon |
---|
| 654 | g = domain.g |
---|
| 655 | neighbours = domain.neighbours |
---|
| 656 | neighbour_vertices = domain.neighbour_vertices |
---|
| 657 | normals = domain.normals |
---|
| 658 | areas = domain.areas |
---|
| 659 | |
---|
| 660 | Stage = domain.quantities['stage'] |
---|
| 661 | Xmom = domain.quantities['xmomentum'] |
---|
| 662 | Bed = domain.quantities['elevation'] |
---|
| 663 | |
---|
| 664 | stage_boundary_values = Stage.boundary_values |
---|
| 665 | xmom_boundary_values = Xmom.boundary_values |
---|
| 666 | stage_explicit_update = Stage.explicit_update |
---|
| 667 | xmom_explicit_update = Xmom.explicit_update |
---|
| 668 | max_speed_array = domain.max_speed_array |
---|
| 669 | |
---|
| 670 | domain.distribute_to_vertices_and_edges() |
---|
| 671 | domain.update_boundary() |
---|
| 672 | stage_V = Stage.vertex_values |
---|
| 673 | xmom_V = Xmom.vertex_values |
---|
| 674 | bed_V = Bed.vertex_values |
---|
| 675 | #h_V = Height.vertex_values |
---|
| 676 | #u_V = Velocity.vertex_values |
---|
| 677 | |
---|
| 678 | number_of_elements = len(stage_V) |
---|
| 679 | |
---|
| 680 | #flux = zeros(2, Float) #Work array for summing up fluxes |
---|
| 681 | #ql = zeros(2, Float) |
---|
| 682 | #qr = zeros(2, Float) |
---|
| 683 | |
---|
| 684 | from comp_flux_ext_wellbalanced import compute_fluxes_ext_wellbalanced #from comp_flux_ext import compute_fluxes_ext |
---|
| 685 | |
---|
| 686 | domain.flux_timestep = compute_fluxes_ext_wellbalanced(timestep, |
---|
| 687 | epsilon, |
---|
| 688 | g, |
---|
| 689 | neighbours, |
---|
| 690 | neighbour_vertices, |
---|
| 691 | normals, |
---|
| 692 | areas, |
---|
| 693 | stage_V, |
---|
| 694 | xmom_V, |
---|
| 695 | bed_V, |
---|
| 696 | stage_boundary_values, |
---|
| 697 | xmom_boundary_values, |
---|
| 698 | stage_explicit_update, |
---|
| 699 | xmom_explicit_update, |
---|
| 700 | number_of_elements, |
---|
| 701 | max_speed_array) |
---|
| 702 | |
---|
| 703 | # ################################### |
---|
| 704 | |
---|
| 705 | |
---|
| 706 | |
---|
| 707 | |
---|
| 708 | |
---|
| 709 | |
---|
| 710 | # Module functions for gradient limiting (distribute_to_vertices_and_edges) |
---|
| 711 | |
---|
| 712 | def distribute_to_vertices_and_edges(domain): |
---|
| 713 | """Distribution from centroids to vertices specific to the |
---|
| 714 | shallow water wave |
---|
| 715 | equation. |
---|
| 716 | |
---|
| 717 | It will ensure that h (w-z) is always non-negative even in the |
---|
| 718 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
| 719 | and deep cases. |
---|
| 720 | |
---|
| 721 | In addition, all conserved quantities get distributed as per either a |
---|
| 722 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 723 | |
---|
| 724 | FIXME: more explanation about removal of artificial variability etc |
---|
| 725 | |
---|
| 726 | Precondition: |
---|
| 727 | All quantities defined at centroids and bed elevation defined at |
---|
| 728 | vertices. |
---|
| 729 | |
---|
| 730 | Postcondition |
---|
| 731 | Conserved quantities defined at vertices |
---|
| 732 | |
---|
| 733 | """ |
---|
| 734 | |
---|
| 735 | #from config import optimised_gradient_limiter |
---|
| 736 | |
---|
| 737 | #Remove very thin layers of water |
---|
| 738 | #protect_against_infinitesimal_and_negative_heights(domain) |
---|
| 739 | |
---|
| 740 | import sys |
---|
| 741 | from Numeric import zeros, Float |
---|
| 742 | from config import epsilon, h0 |
---|
| 743 | |
---|
| 744 | N = domain.number_of_elements |
---|
| 745 | |
---|
| 746 | #Shortcuts |
---|
| 747 | Stage = domain.quantities['stage'] |
---|
| 748 | Xmom = domain.quantities['xmomentum'] |
---|
| 749 | Bed = domain.quantities['elevation'] |
---|
| 750 | Height = domain.quantities['height'] |
---|
| 751 | Velocity = domain.quantities['velocity'] |
---|
| 752 | |
---|
| 753 | #Arrays |
---|
| 754 | w_C = Stage.centroid_values |
---|
| 755 | uh_C = Xmom.centroid_values |
---|
| 756 | z_C = Bed.centroid_values |
---|
| 757 | h_C = Height.centroid_values |
---|
| 758 | u_C = Velocity.centroid_values |
---|
| 759 | |
---|
| 760 | #print id(h_C) |
---|
| 761 | for i in range(N): |
---|
| 762 | h_C[i] = w_C[i] - z_C[i] |
---|
| 763 | if h_C[i] <= 0.0: |
---|
| 764 | #print 'h_C[%d]= %15.5e\n' % (i,h_C[i]) |
---|
| 765 | h_C[i] = 1.0e-15 |
---|
| 766 | w_C[i] = z_C[i] |
---|
| 767 | uh_C[i] = 0.0 |
---|
| 768 | |
---|
| 769 | |
---|
| 770 | ## for i in range(len(h_C)): |
---|
| 771 | ## if h_C[i] < epsilon: |
---|
| 772 | ## u_C[i] = 0.0 #Could have been negative |
---|
| 773 | ## h_C[i] = 0.0 |
---|
| 774 | ## else: |
---|
| 775 | |
---|
| 776 | u_C[:] = uh_C/(h_C + h0/h_C) |
---|
| 777 | |
---|
| 778 | for name in [ 'velocity', 'stage' ]: |
---|
| 779 | Q = domain.quantities[name] |
---|
| 780 | if domain.order == 1: |
---|
| 781 | Q.extrapolate_first_order() |
---|
| 782 | elif domain.order == 2: |
---|
| 783 | #print "add extrapolate second order to shallow water" |
---|
| 784 | #if name != 'height': |
---|
| 785 | Q.extrapolate_second_order() |
---|
| 786 | #Q.limit() |
---|
| 787 | else: |
---|
| 788 | raise 'Unknown order' |
---|
| 789 | |
---|
| 790 | stage_V = domain.quantities['stage'].vertex_values |
---|
| 791 | bed_V = domain.quantities['elevation'].vertex_values |
---|
| 792 | h_V = domain.quantities['height'].vertex_values |
---|
| 793 | u_V = domain.quantities['velocity'].vertex_values |
---|
| 794 | xmom_V = domain.quantities['xmomentum'].vertex_values |
---|
| 795 | |
---|
| 796 | h_V[:] = stage_V - bed_V |
---|
| 797 | for i in range(len(h_C)): |
---|
| 798 | for j in range(2): |
---|
| 799 | if h_V[i,j] < 0.0 : |
---|
| 800 | #print 'h_V[%d,%d] = %f \n' % (i,j,h_V[i,j]) |
---|
| 801 | dh = h_V[i,j] |
---|
| 802 | h_V[i,j] = 0.0 |
---|
| 803 | stage_V[i,j] = bed_V[i,j] |
---|
| 804 | h_V[i,(j+1)%2] = h_V[i,(j+1)%2] + dh |
---|
| 805 | stage_V[i,(j+1)%2] = stage_V[i,(j+1)%2] + dh |
---|
| 806 | |
---|
| 807 | xmom_V[:] = u_V * h_V |
---|
| 808 | |
---|
| 809 | return |
---|
| 810 | # |
---|
| 811 | |
---|
| 812 | |
---|
| 813 | |
---|
| 814 | |
---|
| 815 | |
---|
| 816 | |
---|
| 817 | |
---|
| 818 | # |
---|
| 819 | def protect_against_infinitesimal_and_negative_heights(domain): |
---|
| 820 | """Protect against infinitesimal heights and associated high velocities |
---|
| 821 | """ |
---|
| 822 | |
---|
| 823 | #Shortcuts |
---|
| 824 | wc = domain.quantities['stage'].centroid_values |
---|
| 825 | zc = domain.quantities['elevation'].centroid_values |
---|
| 826 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
| 827 | # ymomc = domain.quantities['ymomentum'].centroid_values |
---|
| 828 | hc = wc - zc #Water depths at centroids |
---|
| 829 | |
---|
| 830 | zv = domain.quantities['elevation'].vertex_values |
---|
| 831 | wv = domain.quantities['stage'].vertex_values |
---|
| 832 | hv = wv-zv |
---|
| 833 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
| 834 | #remove the above two lines and corresponding code below |
---|
| 835 | |
---|
| 836 | #Update |
---|
| 837 | for k in range(domain.number_of_elements): |
---|
| 838 | |
---|
| 839 | if hc[k] < domain.minimum_allowed_height: |
---|
| 840 | #Control stage |
---|
| 841 | if hc[k] < domain.epsilon: |
---|
| 842 | wc[k] = zc[k] # Contain 'lost mass' error |
---|
| 843 | wv[k,0] = zv[k,0] |
---|
| 844 | wv[k,1] = zv[k,1] |
---|
| 845 | |
---|
| 846 | xmomc[k] = 0.0 |
---|
| 847 | |
---|
| 848 | #N = domain.number_of_elements |
---|
| 849 | #if (k == 0) | (k==N-1): |
---|
| 850 | # wc[k] = zc[k] # Contain 'lost mass' error |
---|
| 851 | # wv[k,0] = zv[k,0] |
---|
| 852 | # wv[k,1] = zv[k,1] |
---|
| 853 | |
---|
| 854 | def h_limiter(domain): |
---|
| 855 | """Limit slopes for each volume to eliminate artificial variance |
---|
| 856 | introduced by e.g. second order extrapolator |
---|
| 857 | |
---|
| 858 | limit on h = w-z |
---|
| 859 | |
---|
| 860 | This limiter depends on two quantities (w,z) so it resides within |
---|
| 861 | this module rather than within quantity.py |
---|
| 862 | """ |
---|
| 863 | |
---|
| 864 | from Numeric import zeros, Float |
---|
| 865 | |
---|
| 866 | N = domain.number_of_elements |
---|
| 867 | beta_h = domain.beta_h |
---|
| 868 | |
---|
| 869 | #Shortcuts |
---|
| 870 | wc = domain.quantities['stage'].centroid_values |
---|
| 871 | zc = domain.quantities['elevation'].centroid_values |
---|
| 872 | hc = wc - zc |
---|
| 873 | |
---|
| 874 | wv = domain.quantities['stage'].vertex_values |
---|
| 875 | zv = domain.quantities['elevation'].vertex_values |
---|
| 876 | hv = wv-zv |
---|
| 877 | |
---|
| 878 | hvbar = zeros(hv.shape, Float) #h-limited values |
---|
| 879 | |
---|
| 880 | #Find min and max of this and neighbour's centroid values |
---|
| 881 | hmax = zeros(hc.shape, Float) |
---|
| 882 | hmin = zeros(hc.shape, Float) |
---|
| 883 | |
---|
| 884 | for k in range(N): |
---|
| 885 | hmax[k] = hmin[k] = hc[k] |
---|
| 886 | #for i in range(3): |
---|
| 887 | for i in range(2): |
---|
| 888 | n = domain.neighbours[k,i] |
---|
| 889 | if n >= 0: |
---|
| 890 | hn = hc[n] #Neighbour's centroid value |
---|
| 891 | |
---|
| 892 | hmin[k] = min(hmin[k], hn) |
---|
| 893 | hmax[k] = max(hmax[k], hn) |
---|
| 894 | |
---|
| 895 | |
---|
| 896 | #Diffences between centroids and maxima/minima |
---|
| 897 | dhmax = hmax - hc |
---|
| 898 | dhmin = hmin - hc |
---|
| 899 | |
---|
| 900 | #Deltas between vertex and centroid values |
---|
| 901 | dh = zeros(hv.shape, Float) |
---|
| 902 | #for i in range(3): |
---|
| 903 | for i in range(2): |
---|
| 904 | dh[:,i] = hv[:,i] - hc |
---|
| 905 | |
---|
| 906 | #Phi limiter |
---|
| 907 | for k in range(N): |
---|
| 908 | |
---|
| 909 | #Find the gradient limiter (phi) across vertices |
---|
| 910 | phi = 1.0 |
---|
| 911 | #for i in range(3): |
---|
| 912 | for i in range(2): |
---|
| 913 | r = 1.0 |
---|
| 914 | if (dh[k,i] > 0): r = dhmax[k]/dh[k,i] |
---|
| 915 | if (dh[k,i] < 0): r = dhmin[k]/dh[k,i] |
---|
| 916 | |
---|
| 917 | phi = min( min(r*beta_h, 1), phi ) |
---|
| 918 | |
---|
| 919 | #Then update using phi limiter |
---|
| 920 | #for i in range(3): |
---|
| 921 | for i in range(2): |
---|
| 922 | hvbar[k,i] = hc[k] + phi*dh[k,i] |
---|
| 923 | |
---|
| 924 | return hvbar |
---|
| 925 | |
---|
| 926 | def balance_deep_and_shallow(domain): |
---|
| 927 | """Compute linear combination between stage as computed by |
---|
| 928 | gradient-limiters limiting using w, and stage computed by |
---|
| 929 | gradient-limiters limiting using h (h-limiter). |
---|
| 930 | The former takes precedence when heights are large compared to the |
---|
| 931 | bed slope while the latter takes precedence when heights are |
---|
| 932 | relatively small. Anything in between is computed as a balanced |
---|
| 933 | linear combination in order to avoid numerical disturbances which |
---|
| 934 | would otherwise appear as a result of hard switching between |
---|
| 935 | modes. |
---|
| 936 | |
---|
| 937 | The h-limiter is always applied irrespective of the order. |
---|
| 938 | """ |
---|
| 939 | |
---|
| 940 | #Shortcuts |
---|
| 941 | wc = domain.quantities['stage'].centroid_values |
---|
| 942 | zc = domain.quantities['elevation'].centroid_values |
---|
| 943 | hc = wc - zc |
---|
| 944 | |
---|
| 945 | wv = domain.quantities['stage'].vertex_values |
---|
| 946 | zv = domain.quantities['elevation'].vertex_values |
---|
| 947 | hv = wv-zv |
---|
| 948 | |
---|
| 949 | #Limit h |
---|
| 950 | hvbar = h_limiter(domain) |
---|
| 951 | |
---|
| 952 | for k in range(domain.number_of_elements): |
---|
| 953 | #Compute maximal variation in bed elevation |
---|
| 954 | # This quantitiy is |
---|
| 955 | # dz = max_i abs(z_i - z_c) |
---|
| 956 | # and it is independent of dimension |
---|
| 957 | # In the 1d case zc = (z0+z1)/2 |
---|
| 958 | # In the 2d case zc = (z0+z1+z2)/3 |
---|
| 959 | |
---|
| 960 | dz = max(abs(zv[k,0]-zc[k]), |
---|
| 961 | abs(zv[k,1]-zc[k]))#, |
---|
| 962 | # abs(zv[k,2]-zc[k])) |
---|
| 963 | |
---|
| 964 | |
---|
| 965 | hmin = min( hv[k,:] ) |
---|
| 966 | |
---|
| 967 | #Create alpha in [0,1], where alpha==0 means using the h-limited |
---|
| 968 | #stage and alpha==1 means using the w-limited stage as |
---|
| 969 | #computed by the gradient limiter (both 1st or 2nd order) |
---|
| 970 | |
---|
| 971 | #If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
| 972 | #If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
| 973 | |
---|
| 974 | if dz > 0.0: |
---|
| 975 | alpha = max( min( 2*hmin/dz, 1.0), 0.0 ) |
---|
| 976 | else: |
---|
| 977 | #Flat bed |
---|
| 978 | alpha = 1.0 |
---|
| 979 | |
---|
| 980 | alpha = 0.0 |
---|
| 981 | #Let |
---|
| 982 | # |
---|
| 983 | # wvi be the w-limited stage (wvi = zvi + hvi) |
---|
| 984 | # wvi- be the h-limited state (wvi- = zvi + hvi-) |
---|
| 985 | # |
---|
| 986 | # |
---|
| 987 | #where i=0,1,2 denotes the vertex ids |
---|
| 988 | # |
---|
| 989 | #Weighted balance between w-limited and h-limited stage is |
---|
| 990 | # |
---|
| 991 | # wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) |
---|
| 992 | # |
---|
| 993 | #It follows that the updated wvi is |
---|
| 994 | # wvi := zvi + (1-alpha)*hvi- + alpha*hvi |
---|
| 995 | # |
---|
| 996 | # Momentum is balanced between constant and limited |
---|
| 997 | |
---|
| 998 | |
---|
| 999 | #for i in range(3): |
---|
| 1000 | # wv[k,i] = zv[k,i] + hvbar[k,i] |
---|
| 1001 | |
---|
| 1002 | #return |
---|
| 1003 | |
---|
| 1004 | if alpha < 1: |
---|
| 1005 | |
---|
| 1006 | #for i in range(3): |
---|
| 1007 | for i in range(2): |
---|
| 1008 | wv[k,i] = zv[k,i] + (1.0-alpha)*hvbar[k,i] + alpha*hv[k,i] |
---|
| 1009 | |
---|
| 1010 | #Momentums at centroids |
---|
| 1011 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
| 1012 | # ymomc = domain.quantities['ymomentum'].centroid_values |
---|
| 1013 | |
---|
| 1014 | #Momentums at vertices |
---|
| 1015 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
| 1016 | # ymomv = domain.quantities['ymomentum'].vertex_values |
---|
| 1017 | |
---|
| 1018 | # Update momentum as a linear combination of |
---|
| 1019 | # xmomc and ymomc (shallow) and momentum |
---|
| 1020 | # from extrapolator xmomv and ymomv (deep). |
---|
| 1021 | xmomv[k,:] = (1.0-alpha)*xmomc[k] + alpha*xmomv[k,:] |
---|
| 1022 | # ymomv[k,:] = (1-alpha)*ymomc[k] + alpha*ymomv[k,:] |
---|
| 1023 | |
---|
| 1024 | |
---|
| 1025 | ############################################### |
---|
| 1026 | #Boundaries - specific to the shallow water wave equation |
---|
| 1027 | class Reflective_boundary(Boundary): |
---|
| 1028 | """Reflective boundary returns same conserved quantities as |
---|
| 1029 | those present in its neighbour volume but reflected. |
---|
| 1030 | |
---|
| 1031 | This class is specific to the shallow water equation as it |
---|
| 1032 | works with the momentum quantities assumed to be the second |
---|
| 1033 | and third conserved quantities. |
---|
| 1034 | """ |
---|
| 1035 | |
---|
| 1036 | def __init__(self, domain = None): |
---|
| 1037 | Boundary.__init__(self) |
---|
| 1038 | |
---|
| 1039 | if domain is None: |
---|
| 1040 | msg = 'Domain must be specified for reflective boundary' |
---|
| 1041 | raise msg |
---|
| 1042 | |
---|
| 1043 | #Handy shorthands |
---|
| 1044 | self.normals = domain.normals |
---|
| 1045 | self.stage = domain.quantities['stage'].vertex_values |
---|
| 1046 | self.xmom = domain.quantities['xmomentum'].vertex_values |
---|
| 1047 | self.bed = domain.quantities['elevation'].vertex_values |
---|
| 1048 | self.height = domain.quantities['height'].vertex_values |
---|
| 1049 | self.velocity = domain.quantities['velocity'].vertex_values |
---|
| 1050 | |
---|
| 1051 | |
---|
| 1052 | from Numeric import zeros, Float |
---|
| 1053 | self.quantities = zeros(5, Float) |
---|
| 1054 | |
---|
| 1055 | def __repr__(self): |
---|
| 1056 | return 'Reflective_boundary' |
---|
| 1057 | |
---|
| 1058 | |
---|
| 1059 | def evaluate(self, vol_id, edge_id): |
---|
| 1060 | """Reflective boundaries reverses the outward momentum |
---|
| 1061 | of the volume they serve. |
---|
| 1062 | """ |
---|
| 1063 | |
---|
| 1064 | q = self.quantities |
---|
| 1065 | q[0] = self.stage[vol_id, edge_id] |
---|
| 1066 | q[1] = -self.xmom[vol_id, edge_id] |
---|
| 1067 | q[2] = self.bed[vol_id, edge_id] |
---|
| 1068 | q[3] = self.height[vol_id, edge_id] |
---|
| 1069 | q[4] = -self.velocity[vol_id, edge_id] |
---|
| 1070 | |
---|
| 1071 | #normal = self.normals[vol_id,edge_id] |
---|
| 1072 | |
---|
| 1073 | return q |
---|
| 1074 | |
---|
| 1075 | class Dirichlet_boundary(Boundary): |
---|
| 1076 | """Dirichlet boundary returns constant values for the |
---|
| 1077 | conserved quantities |
---|
| 1078 | """ |
---|
| 1079 | |
---|
| 1080 | |
---|
| 1081 | def __init__(self, quantities=None): |
---|
| 1082 | Boundary.__init__(self) |
---|
| 1083 | |
---|
| 1084 | if quantities is None: |
---|
| 1085 | msg = 'Must specify one value for each evolved quantity, w,uh,z,h,u' |
---|
| 1086 | raise msg |
---|
| 1087 | |
---|
| 1088 | from Numeric import array, Float |
---|
| 1089 | self.quantities=array(quantities).astype(Float) |
---|
| 1090 | |
---|
| 1091 | def __repr__(self): |
---|
| 1092 | return 'Dirichlet boundary (%s)' %self.quantities |
---|
| 1093 | |
---|
| 1094 | def evaluate(self, vol_id=None, edge_id=None): |
---|
| 1095 | return self.quantities |
---|
| 1096 | |
---|
| 1097 | |
---|
| 1098 | ######################### |
---|
| 1099 | #Standard forcing terms: |
---|
| 1100 | # |
---|
| 1101 | def gravity(domain): |
---|
| 1102 | """Apply gravitational pull in the presence of bed slope |
---|
| 1103 | """ |
---|
| 1104 | |
---|
| 1105 | from util import gradient |
---|
| 1106 | from Numeric import zeros, Float, array, sum |
---|
| 1107 | |
---|
| 1108 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
| 1109 | stage = domain.quantities['stage'].explicit_update |
---|
| 1110 | # ymom = domain.quantities['ymomentum'].explicit_update |
---|
| 1111 | |
---|
| 1112 | Stage = domain.quantities['stage'] |
---|
| 1113 | Elevation = domain.quantities['elevation'] |
---|
| 1114 | #h = Stage.edge_values - Elevation.edge_values |
---|
| 1115 | h = Stage.vertex_values - Elevation.vertex_values |
---|
| 1116 | b = Elevation.vertex_values |
---|
| 1117 | w = Stage.vertex_values |
---|
| 1118 | |
---|
| 1119 | x = domain.get_vertex_coordinates() |
---|
| 1120 | g = domain.g |
---|
| 1121 | |
---|
| 1122 | for k in range(domain.number_of_elements): |
---|
| 1123 | # avg_h = sum( h[k,:] )/3 |
---|
| 1124 | avg_h = sum( h[k,:] )/2 |
---|
| 1125 | |
---|
| 1126 | #Compute bed slope |
---|
| 1127 | #x0, y0, x1, y1, x2, y2 = x[k,:] |
---|
| 1128 | x0, x1 = x[k,:] |
---|
| 1129 | #z0, z1, z2 = v[k,:] |
---|
| 1130 | b0, b1 = b[k,:] |
---|
| 1131 | |
---|
| 1132 | w0, w1 = w[k,:] |
---|
| 1133 | wx = gradient(x0, x1, w0, w1) |
---|
| 1134 | |
---|
| 1135 | #zx, zy = gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2) |
---|
| 1136 | bx = gradient(x0, x1, b0, b1) |
---|
| 1137 | |
---|
| 1138 | #Update momentum (explicit update is reset to source values) |
---|
| 1139 | xmom[k] += -g*bx*avg_h |
---|
| 1140 | #xmom[k] = -g*bx*avg_h |
---|
| 1141 | #stage[k] = 0.0 |
---|
| 1142 | |
---|
| 1143 | |
---|
| 1144 | def manning_friction(domain): |
---|
| 1145 | """Apply (Manning) friction to water momentum |
---|
| 1146 | """ |
---|
| 1147 | |
---|
| 1148 | from math import sqrt |
---|
| 1149 | |
---|
| 1150 | w = domain.quantities['stage'].centroid_values |
---|
| 1151 | z = domain.quantities['elevation'].centroid_values |
---|
| 1152 | h = w-z |
---|
| 1153 | |
---|
| 1154 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 1155 | #vh = domain.quantities['ymomentum'].centroid_values |
---|
| 1156 | eta = domain.quantities['friction'].centroid_values |
---|
| 1157 | |
---|
| 1158 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 1159 | #ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
| 1160 | |
---|
| 1161 | N = domain.number_of_elements |
---|
| 1162 | eps = domain.minimum_allowed_height |
---|
| 1163 | g = domain.g |
---|
| 1164 | |
---|
| 1165 | for k in range(N): |
---|
| 1166 | if eta[k] >= eps: |
---|
| 1167 | if h[k] >= eps: |
---|
| 1168 | #S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
| 1169 | S = -g * eta[k]**2 * uh[k] |
---|
| 1170 | S /= h[k]**(7.0/3) |
---|
| 1171 | |
---|
| 1172 | #Update momentum |
---|
| 1173 | xmom_update[k] += S*uh[k] |
---|
| 1174 | #ymom_update[k] += S*vh[k] |
---|
| 1175 | |
---|
| 1176 | def linear_friction(domain): |
---|
| 1177 | """Apply linear friction to water momentum |
---|
| 1178 | |
---|
| 1179 | Assumes quantity: 'linear_friction' to be present |
---|
| 1180 | """ |
---|
| 1181 | |
---|
| 1182 | from math import sqrt |
---|
| 1183 | |
---|
| 1184 | w = domain.quantities['stage'].centroid_values |
---|
| 1185 | z = domain.quantities['elevation'].centroid_values |
---|
| 1186 | h = w-z |
---|
| 1187 | |
---|
| 1188 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 1189 | # vh = domain.quantities['ymomentum'].centroid_values |
---|
| 1190 | tau = domain.quantities['linear_friction'].centroid_values |
---|
| 1191 | |
---|
| 1192 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 1193 | # ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
| 1194 | |
---|
| 1195 | N = domain.number_of_elements |
---|
| 1196 | eps = domain.minimum_allowed_height |
---|
| 1197 | g = domain.g #Not necessary? Why was this added? |
---|
| 1198 | |
---|
| 1199 | for k in range(N): |
---|
| 1200 | if tau[k] >= eps: |
---|
| 1201 | if h[k] >= eps: |
---|
| 1202 | S = -tau[k]/h[k] |
---|
| 1203 | |
---|
| 1204 | #Update momentum |
---|
| 1205 | xmom_update[k] += S*uh[k] |
---|
| 1206 | # ymom_update[k] += S*vh[k] |
---|
| 1207 | |
---|
| 1208 | |
---|
| 1209 | |
---|
| 1210 | def check_forcefield(f): |
---|
| 1211 | """Check that f is either |
---|
| 1212 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
| 1213 | and that it returns an array or a list of same length |
---|
| 1214 | as x and y |
---|
| 1215 | 2: a scalar |
---|
| 1216 | """ |
---|
| 1217 | |
---|
| 1218 | from Numeric import ones, Float, array |
---|
| 1219 | |
---|
| 1220 | |
---|
| 1221 | if callable(f): |
---|
| 1222 | #N = 3 |
---|
| 1223 | N = 2 |
---|
| 1224 | #x = ones(3, Float) |
---|
| 1225 | #y = ones(3, Float) |
---|
| 1226 | x = ones(2, Float) |
---|
| 1227 | #y = ones(2, Float) |
---|
| 1228 | |
---|
| 1229 | try: |
---|
| 1230 | #q = f(1.0, x=x, y=y) |
---|
| 1231 | q = f(1.0, x=x) |
---|
| 1232 | except Exception, e: |
---|
| 1233 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
| 1234 | #FIXME: Reconsider this semantics |
---|
| 1235 | raise msg |
---|
| 1236 | |
---|
| 1237 | try: |
---|
| 1238 | q = array(q).astype(Float) |
---|
| 1239 | except: |
---|
| 1240 | msg = 'Return value from vector function %s could ' %f |
---|
| 1241 | msg += 'not be converted into a Numeric array of floats.\n' |
---|
| 1242 | msg += 'Specified function should return either list or array.' |
---|
| 1243 | raise msg |
---|
| 1244 | |
---|
| 1245 | #Is this really what we want? |
---|
| 1246 | msg = 'Return vector from function %s ' %f |
---|
| 1247 | msg += 'must have same lenght as input vectors' |
---|
| 1248 | assert len(q) == N, msg |
---|
| 1249 | |
---|
| 1250 | else: |
---|
| 1251 | try: |
---|
| 1252 | f = float(f) |
---|
| 1253 | except: |
---|
| 1254 | msg = 'Force field %s must be either a scalar' %f |
---|
| 1255 | msg += ' or a vector function' |
---|
| 1256 | raise msg |
---|
| 1257 | return f |
---|
| 1258 | |
---|
| 1259 | class Wind_stress: |
---|
| 1260 | """Apply wind stress to water momentum in terms of |
---|
| 1261 | wind speed [m/s] and wind direction [degrees] |
---|
| 1262 | """ |
---|
| 1263 | |
---|
| 1264 | def __init__(self, *args, **kwargs): |
---|
| 1265 | """Initialise windfield from wind speed s [m/s] |
---|
| 1266 | and wind direction phi [degrees] |
---|
| 1267 | |
---|
| 1268 | Inputs v and phi can be either scalars or Python functions, e.g. |
---|
| 1269 | |
---|
| 1270 | W = Wind_stress(10, 178) |
---|
| 1271 | |
---|
| 1272 | #FIXME - 'normal' degrees are assumed for now, i.e. the |
---|
| 1273 | vector (1,0) has zero degrees. |
---|
| 1274 | We may need to convert from 'compass' degrees later on and also |
---|
| 1275 | map from True north to grid north. |
---|
| 1276 | |
---|
| 1277 | Arguments can also be Python functions of t,x,y as in |
---|
| 1278 | |
---|
| 1279 | def speed(t,x,y): |
---|
| 1280 | ... |
---|
| 1281 | return s |
---|
| 1282 | |
---|
| 1283 | def angle(t,x,y): |
---|
| 1284 | ... |
---|
| 1285 | return phi |
---|
| 1286 | |
---|
| 1287 | where x and y are vectors. |
---|
| 1288 | |
---|
| 1289 | and then pass the functions in |
---|
| 1290 | |
---|
| 1291 | W = Wind_stress(speed, angle) |
---|
| 1292 | |
---|
| 1293 | The instantiated object W can be appended to the list of |
---|
| 1294 | forcing_terms as in |
---|
| 1295 | |
---|
| 1296 | Alternatively, one vector valued function for (speed, angle) |
---|
| 1297 | can be applied, providing both quantities simultaneously. |
---|
| 1298 | As in |
---|
| 1299 | W = Wind_stress(F), where returns (speed, angle) for each t. |
---|
| 1300 | |
---|
| 1301 | domain.forcing_terms.append(W) |
---|
| 1302 | """ |
---|
| 1303 | |
---|
| 1304 | from config import rho_a, rho_w, eta_w |
---|
| 1305 | from Numeric import array, Float |
---|
| 1306 | |
---|
| 1307 | if len(args) == 2: |
---|
| 1308 | s = args[0] |
---|
| 1309 | phi = args[1] |
---|
| 1310 | elif len(args) == 1: |
---|
| 1311 | #Assume vector function returning (s, phi)(t,x,y) |
---|
| 1312 | vector_function = args[0] |
---|
| 1313 | #s = lambda t,x,y: vector_function(t,x=x,y=y)[0] |
---|
| 1314 | #phi = lambda t,x,y: vector_function(t,x=x,y=y)[1] |
---|
| 1315 | s = lambda t,x: vector_function(t,x=x)[0] |
---|
| 1316 | phi = lambda t,x: vector_function(t,x=x)[1] |
---|
| 1317 | else: |
---|
| 1318 | #Assume info is in 2 keyword arguments |
---|
| 1319 | |
---|
| 1320 | if len(kwargs) == 2: |
---|
| 1321 | s = kwargs['s'] |
---|
| 1322 | phi = kwargs['phi'] |
---|
| 1323 | else: |
---|
| 1324 | raise 'Assumes two keyword arguments: s=..., phi=....' |
---|
| 1325 | |
---|
| 1326 | print 'phi', phi |
---|
| 1327 | self.speed = check_forcefield(s) |
---|
| 1328 | self.phi = check_forcefield(phi) |
---|
| 1329 | |
---|
| 1330 | self.const = eta_w*rho_a/rho_w |
---|
| 1331 | |
---|
| 1332 | |
---|
| 1333 | def __call__(self, domain): |
---|
| 1334 | """Evaluate windfield based on values found in domain |
---|
| 1335 | """ |
---|
| 1336 | |
---|
| 1337 | from math import pi, cos, sin, sqrt |
---|
| 1338 | from Numeric import Float, ones, ArrayType |
---|
| 1339 | |
---|
| 1340 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
| 1341 | #ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
| 1342 | |
---|
| 1343 | N = domain.number_of_elements |
---|
| 1344 | t = domain.time |
---|
| 1345 | |
---|
| 1346 | if callable(self.speed): |
---|
| 1347 | xc = domain.get_centroid_coordinates() |
---|
| 1348 | #s_vec = self.speed(t, xc[:,0], xc[:,1]) |
---|
| 1349 | s_vec = self.speed(t, xc) |
---|
| 1350 | else: |
---|
| 1351 | #Assume s is a scalar |
---|
| 1352 | |
---|
| 1353 | try: |
---|
| 1354 | s_vec = self.speed * ones(N, Float) |
---|
| 1355 | except: |
---|
| 1356 | msg = 'Speed must be either callable or a scalar: %s' %self.s |
---|
| 1357 | raise msg |
---|
| 1358 | |
---|
| 1359 | |
---|
| 1360 | if callable(self.phi): |
---|
| 1361 | xc = domain.get_centroid_coordinates() |
---|
| 1362 | #phi_vec = self.phi(t, xc[:,0], xc[:,1]) |
---|
| 1363 | phi_vec = self.phi(t, xc) |
---|
| 1364 | else: |
---|
| 1365 | #Assume phi is a scalar |
---|
| 1366 | |
---|
| 1367 | try: |
---|
| 1368 | phi_vec = self.phi * ones(N, Float) |
---|
| 1369 | except: |
---|
| 1370 | msg = 'Angle must be either callable or a scalar: %s' %self.phi |
---|
| 1371 | raise msg |
---|
| 1372 | |
---|
| 1373 | #assign_windfield_values(xmom_update, ymom_update, |
---|
| 1374 | # s_vec, phi_vec, self.const) |
---|
| 1375 | assign_windfield_values(xmom_update, s_vec, phi_vec, self.const) |
---|
| 1376 | |
---|
| 1377 | |
---|
| 1378 | #def assign_windfield_values(xmom_update, ymom_update, |
---|
| 1379 | # s_vec, phi_vec, const): |
---|
| 1380 | def assign_windfield_values(xmom_update, s_vec, phi_vec, const): |
---|
| 1381 | """Python version of assigning wind field to update vectors. |
---|
| 1382 | A c version also exists (for speed) |
---|
| 1383 | """ |
---|
| 1384 | from math import pi, cos, sin, sqrt |
---|
| 1385 | |
---|
| 1386 | N = len(s_vec) |
---|
| 1387 | for k in range(N): |
---|
| 1388 | s = s_vec[k] |
---|
| 1389 | phi = phi_vec[k] |
---|
| 1390 | |
---|
| 1391 | #Convert to radians |
---|
| 1392 | phi = phi*pi/180 |
---|
| 1393 | |
---|
| 1394 | #Compute velocity vector (u, v) |
---|
| 1395 | u = s*cos(phi) |
---|
| 1396 | v = s*sin(phi) |
---|
| 1397 | |
---|
| 1398 | #Compute wind stress |
---|
| 1399 | #S = const * sqrt(u**2 + v**2) |
---|
| 1400 | S = const * u |
---|
| 1401 | xmom_update[k] += S*u |
---|
| 1402 | #ymom_update[k] += S*v |
---|