1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | import unittest |
---|
4 | from math import sqrt, pi |
---|
5 | |
---|
6 | |
---|
7 | #from shallow_water_domain import * |
---|
8 | #from shallow_water_domain import flux_function as domain_flux_function |
---|
9 | |
---|
10 | from shallow_water_domain_suggestion1 import * |
---|
11 | from shallow_water_domain_suggestion1 import flux_function as domain_flux_function |
---|
12 | |
---|
13 | from Numeric import allclose, array, ones, Float, maximum, zeros |
---|
14 | |
---|
15 | |
---|
16 | class Test_Shallow_Water(unittest.TestCase): |
---|
17 | def setUp(self): |
---|
18 | self.points = [0.0, 1.0, 2.0, 3.0] |
---|
19 | self.vertex_values = [[1.0,2.0],[4.0,5.0],[-1.0,2.0]] |
---|
20 | self.points2 = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] |
---|
21 | |
---|
22 | def tearDown(self): |
---|
23 | pass |
---|
24 | #print " Tearing down" |
---|
25 | |
---|
26 | |
---|
27 | def test_creation(self): |
---|
28 | domain = Domain(self.points) |
---|
29 | assert allclose(domain.centroids, [0.5, 1.5, 2.5]) |
---|
30 | |
---|
31 | def test_compute_fluxes(self): |
---|
32 | """ |
---|
33 | Compare shallow_water_domain flux calculation against a previous |
---|
34 | Python implementation (defined in this file) |
---|
35 | """ |
---|
36 | domain = Domain(self.points) |
---|
37 | domain.set_quantity('stage',2.0) |
---|
38 | domain.set_boundary({'exterior' : Reflective_boundary(domain)}) |
---|
39 | |
---|
40 | stage_ud, xmom_ud = local_compute_fluxes(domain) |
---|
41 | |
---|
42 | domain.distribute_to_vertices_and_edges() |
---|
43 | domain.compute_fluxes() |
---|
44 | |
---|
45 | print domain.quantities['stage'].explicit_update |
---|
46 | print domain.quantities['xmomentum'].explicit_update |
---|
47 | print stage_ud |
---|
48 | print xmom_ud |
---|
49 | |
---|
50 | assert allclose( domain.quantities['stage'].explicit_update, stage_ud ) |
---|
51 | assert allclose( domain.quantities['xmomentum'].explicit_update, xmom_ud ) |
---|
52 | |
---|
53 | |
---|
54 | def test_local_flux_function(self): |
---|
55 | normal = 1.0 |
---|
56 | ql = array([1.0, 2.0],Float) |
---|
57 | qr = array([1.0, 2.0],Float) |
---|
58 | zl = 0.0 |
---|
59 | zr = 0.0 |
---|
60 | |
---|
61 | #This assumes h0 = 1.0e-3!! |
---|
62 | edgeflux, maxspeed = local_flux_function(normal, ql,qr,zl,zr) |
---|
63 | #print maxspeed |
---|
64 | #print edgeflux |
---|
65 | |
---|
66 | assert allclose(array([2.0, 8.9],Float), edgeflux, rtol=1.0e-005) |
---|
67 | assert allclose(5.1305, maxspeed, rtol=1.0e-005) |
---|
68 | |
---|
69 | normal = -1.0 |
---|
70 | ql = array([1.0, 2.0],Float) |
---|
71 | qr = array([1.0, 2.0],Float) |
---|
72 | zl = 0.0 |
---|
73 | zr = 0.0 |
---|
74 | |
---|
75 | edgeflux, maxspeed = local_flux_function(normal, ql,qr,zl,zr) |
---|
76 | |
---|
77 | |
---|
78 | #print maxspeed |
---|
79 | #print edgeflux |
---|
80 | |
---|
81 | assert allclose(array([-2.0, -8.9],Float), edgeflux, rtol=1.0e-005) |
---|
82 | assert allclose(5.1305, maxspeed, rtol=1.0e-005) |
---|
83 | |
---|
84 | def test_domain_flux_function(self): |
---|
85 | normal = 1.0 |
---|
86 | ql = array([1.0, 2.0],Float) |
---|
87 | qr = array([1.0, 2.0],Float) |
---|
88 | zl = 0.0 |
---|
89 | zr = 0.0 |
---|
90 | |
---|
91 | edgeflux, maxspeed = local_flux_function(normal, ql,qr,zl,zr) |
---|
92 | |
---|
93 | #print edgeflux |
---|
94 | |
---|
95 | |
---|
96 | |
---|
97 | domainedgeflux, domainmaxspeed = domain_flux_function(normal, ql,qr,zl,zr) |
---|
98 | |
---|
99 | #print domainedgeflux |
---|
100 | |
---|
101 | assert allclose(domainedgeflux, edgeflux) |
---|
102 | assert allclose(domainmaxspeed, maxspeed) |
---|
103 | |
---|
104 | def test_gravity(self): |
---|
105 | """ |
---|
106 | Compare shallow_water_domain gravity calculation |
---|
107 | """ |
---|
108 | |
---|
109 | def slope_one(x): |
---|
110 | return x |
---|
111 | |
---|
112 | domain = Domain(self.points) |
---|
113 | domain.set_quantity('stage',4.0) |
---|
114 | domain.set_quantity('elevation',slope_one) |
---|
115 | domain.set_boundary({'exterior' : Reflective_boundary(domain)}) |
---|
116 | |
---|
117 | gravity(domain) |
---|
118 | |
---|
119 | #print domain.quantities['stage'].vertex_values |
---|
120 | #print domain.quantities['elevation'].vertex_values |
---|
121 | #print domain.quantities['xmomentum'].explicit_update |
---|
122 | |
---|
123 | assert allclose( array([-34.3, -24.5, -14.7], Float), domain.quantities['xmomentum'].explicit_update ) |
---|
124 | |
---|
125 | |
---|
126 | def test_evolve_first_order(self): |
---|
127 | """ |
---|
128 | Compare still lake solution for various versions of shallow_water_domain |
---|
129 | """ |
---|
130 | |
---|
131 | def slope_square(x): |
---|
132 | return maximum(4.0-(x-5.0)*(x-5.0), 0.0) |
---|
133 | |
---|
134 | domain = Domain(self.points2) |
---|
135 | domain.set_quantity('stage',10.0) |
---|
136 | domain.set_quantity('elevation',slope_square) |
---|
137 | domain.set_boundary({'exterior' : Reflective_boundary(domain)}) |
---|
138 | |
---|
139 | domain.default_order = 1 |
---|
140 | domain.set_timestepping_method('euler') |
---|
141 | |
---|
142 | yieldstep=1.0 |
---|
143 | finaltime=1.0 |
---|
144 | |
---|
145 | for t in domain.evolve(yieldstep=yieldstep, finaltime=finaltime): |
---|
146 | pass |
---|
147 | |
---|
148 | ## print domain.quantities['stage'].vertex_values |
---|
149 | ## print domain.quantities['elevation'].vertex_values |
---|
150 | ## print domain.quantities['xmomentum'].vertex_values |
---|
151 | ## |
---|
152 | ## |
---|
153 | ## print domain.quantities['stage'].centroid_values |
---|
154 | ## print domain.quantities['elevation'].centroid_values |
---|
155 | ## print domain.quantities['xmomentum'].centroid_values |
---|
156 | |
---|
157 | assert allclose( 10.0*ones(10), domain.quantities['stage'].centroid_values ) |
---|
158 | assert allclose( zeros(10), domain.quantities['xmomentum'].centroid_values ) |
---|
159 | |
---|
160 | |
---|
161 | def test_evolve_euler_second_order_space(self): |
---|
162 | """ |
---|
163 | Compare still lake solution for various versions of shallow_water_domain |
---|
164 | """ |
---|
165 | |
---|
166 | def slope_square(x): |
---|
167 | return maximum(4.0-(x-5.0)*(x-5.0), 0.0) |
---|
168 | |
---|
169 | domain = Domain(self.points2) |
---|
170 | domain.set_quantity('stage',10.0) |
---|
171 | domain.set_quantity('elevation',slope_square) |
---|
172 | domain.set_boundary({'exterior' : Reflective_boundary(domain)}) |
---|
173 | |
---|
174 | domain.default_order = 2 |
---|
175 | domain.set_timestepping_method('rk2') |
---|
176 | yieldstep=1.0 |
---|
177 | finaltime=1.0 |
---|
178 | |
---|
179 | for t in domain.evolve(yieldstep=yieldstep, finaltime=finaltime): |
---|
180 | pass |
---|
181 | |
---|
182 | assert allclose( 10.0*ones(10), domain.quantities['stage'].centroid_values ) |
---|
183 | assert allclose( zeros(10), domain.quantities['xmomentum'].centroid_values ) |
---|
184 | |
---|
185 | def test_evolve_second_order_space_time(self): |
---|
186 | """ |
---|
187 | Compare still lake solution for various versions of shallow_water_domain |
---|
188 | """ |
---|
189 | |
---|
190 | def slope_square(x): |
---|
191 | return maximum(4.0-(x-5.0)*(x-5.0), 0.0) |
---|
192 | |
---|
193 | domain = Domain(self.points2) |
---|
194 | domain.set_quantity('stage',10.0) |
---|
195 | domain.set_quantity('elevation',slope_square) |
---|
196 | domain.set_boundary({'exterior' : Reflective_boundary(domain)}) |
---|
197 | |
---|
198 | domain.default_order = 2 |
---|
199 | domain.set_timestepping_method('rk3') |
---|
200 | |
---|
201 | yieldstep=1.0 |
---|
202 | finaltime=1.0 |
---|
203 | |
---|
204 | for t in domain.evolve(yieldstep=yieldstep, finaltime=finaltime): |
---|
205 | pass |
---|
206 | |
---|
207 | assert allclose( 10.0*ones(10), domain.quantities['stage'].centroid_values ) |
---|
208 | assert allclose( zeros(10), domain.quantities['xmomentum'].centroid_values ) |
---|
209 | |
---|
210 | |
---|
211 | |
---|
212 | #============================================================================== |
---|
213 | |
---|
214 | def local_compute_fluxes(domain): |
---|
215 | """Compute all fluxes and the timestep suitable for all volumes |
---|
216 | in domain. |
---|
217 | |
---|
218 | Compute total flux for each conserved quantity using "flux_function" |
---|
219 | |
---|
220 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
221 | Resulting flux is then scaled by area and stored in |
---|
222 | explicit_update for each of the three conserved quantities |
---|
223 | stage, xmomentum and ymomentum |
---|
224 | |
---|
225 | The maximal allowable speed computed by the flux_function for each volume |
---|
226 | is converted to a timestep that must not be exceeded. The minimum of |
---|
227 | those is computed as the next overall timestep. |
---|
228 | |
---|
229 | Post conditions: |
---|
230 | domain.explicit_update is reset to computed flux values |
---|
231 | domain.timestep is set to the largest step satisfying all volumes. |
---|
232 | """ |
---|
233 | |
---|
234 | import sys |
---|
235 | from Numeric import zeros, Float |
---|
236 | |
---|
237 | N = domain.number_of_elements |
---|
238 | |
---|
239 | tmp0 = zeros(N,Float) |
---|
240 | tmp1 = zeros(N,Float) |
---|
241 | |
---|
242 | #Shortcuts |
---|
243 | Stage = domain.quantities['stage'] |
---|
244 | Xmom = domain.quantities['xmomentum'] |
---|
245 | # Ymom = domain.quantities['ymomentum'] |
---|
246 | Bed = domain.quantities['elevation'] |
---|
247 | |
---|
248 | #Arrays |
---|
249 | #stage = Stage.edge_values |
---|
250 | #xmom = Xmom.edge_values |
---|
251 | # ymom = Ymom.edge_values |
---|
252 | #bed = Bed.edge_values |
---|
253 | |
---|
254 | stage = Stage.vertex_values |
---|
255 | xmom = Xmom.vertex_values |
---|
256 | bed = Bed.vertex_values |
---|
257 | |
---|
258 | #print 'stage edge values', stage |
---|
259 | #print 'xmom edge values', xmom |
---|
260 | #print 'bed values', bed |
---|
261 | |
---|
262 | stage_bdry = Stage.boundary_values |
---|
263 | xmom_bdry = Xmom.boundary_values |
---|
264 | #print 'stage_bdry',stage_bdry |
---|
265 | #print 'xmom_bdry', xmom_bdry |
---|
266 | # ymom_bdry = Ymom.boundary_values |
---|
267 | |
---|
268 | # flux = zeros(3, Float) #Work array for summing up fluxes |
---|
269 | flux = zeros(2, Float) #Work array for summing up fluxes |
---|
270 | ql = zeros(2, Float) |
---|
271 | qr = zeros(2, Float) |
---|
272 | |
---|
273 | #Loop |
---|
274 | timestep = float(sys.maxint) |
---|
275 | enter = True |
---|
276 | for k in range(N): |
---|
277 | |
---|
278 | flux[:] = 0. #Reset work array |
---|
279 | #for i in range(3): |
---|
280 | for i in range(2): |
---|
281 | #Quantities inside volume facing neighbour i |
---|
282 | #ql[0] = stage[k, i] |
---|
283 | #ql[1] = xmom[k, i] |
---|
284 | ql = [stage[k, i], xmom[k, i]] |
---|
285 | zl = bed[k, i] |
---|
286 | |
---|
287 | #Quantities at neighbour on nearest face |
---|
288 | n = domain.neighbours[k,i] |
---|
289 | if n < 0: |
---|
290 | m = -n-1 #Convert negative flag to index |
---|
291 | qr[0] = stage_bdry[m] |
---|
292 | qr[1] = xmom_bdry[m] |
---|
293 | zr = zl #Extend bed elevation to boundary |
---|
294 | else: |
---|
295 | #m = domain.neighbour_edges[k,i] |
---|
296 | m = domain.neighbour_vertices[k,i] |
---|
297 | #print i, ' ' , m |
---|
298 | #qr = [stage[n, m], xmom[n, m], ymom[n, m]] |
---|
299 | qr[0] = stage[n, m] |
---|
300 | qr[1] = xmom[n, m] |
---|
301 | zr = bed[n, m] |
---|
302 | |
---|
303 | |
---|
304 | #Outward pointing normal vector |
---|
305 | normal = domain.normals[k, i] |
---|
306 | |
---|
307 | #Flux computation using provided function |
---|
308 | #edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
309 | #print 'ql',ql |
---|
310 | #print 'qr',qr |
---|
311 | |
---|
312 | |
---|
313 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
314 | |
---|
315 | #print 'edgeflux', edgeflux |
---|
316 | |
---|
317 | # THIS IS THE LINE TO DEAL WITH LEFT AND RIGHT FLUXES |
---|
318 | # flux = edgefluxleft - edgefluxright |
---|
319 | flux -= edgeflux #* domain.edgelengths[k,i] |
---|
320 | #Update optimal_timestep |
---|
321 | try: |
---|
322 | #timestep = min(timestep, 0.5*domain.radii[k]/max_speed) |
---|
323 | timestep = min(timestep, domain.CFL*0.5*domain.areas[k]/max_speed) |
---|
324 | except ZeroDivisionError: |
---|
325 | pass |
---|
326 | |
---|
327 | #Normalise by area and store for when all conserved |
---|
328 | #quantities get updated |
---|
329 | flux /= domain.areas[k] |
---|
330 | |
---|
331 | #Stage.explicit_update[k] = flux[0] |
---|
332 | tmp0[k] = flux[0] |
---|
333 | tmp1[k] = flux[1] |
---|
334 | |
---|
335 | |
---|
336 | return tmp0, tmp1 |
---|
337 | |
---|
338 | |
---|
339 | def local_flux_function(normal, ql, qr, zl, zr): |
---|
340 | """Compute fluxes between volumes for the shallow water wave equation |
---|
341 | cast in terms of w = h+z using the 'central scheme' as described in |
---|
342 | |
---|
343 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
344 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
345 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
346 | |
---|
347 | The implemented formula is given in equation (3.15) on page 714 |
---|
348 | |
---|
349 | Conserved quantities w, uh, are stored as elements 0 and 1 |
---|
350 | in the numerical vectors ql an qr. |
---|
351 | |
---|
352 | Bed elevations zl and zr. |
---|
353 | """ |
---|
354 | |
---|
355 | from config import g, epsilon, h0 |
---|
356 | from math import sqrt |
---|
357 | from Numeric import array |
---|
358 | |
---|
359 | #print 'ql',ql |
---|
360 | |
---|
361 | #Align momentums with x-axis |
---|
362 | #q_left = rotate(ql, normal, direction = 1) |
---|
363 | #q_right = rotate(qr, normal, direction = 1) |
---|
364 | q_left = ql |
---|
365 | q_left[1] = q_left[1]*normal |
---|
366 | q_right = qr |
---|
367 | q_right[1] = q_right[1]*normal |
---|
368 | |
---|
369 | #z = (zl+zr)/2 #Take average of field values |
---|
370 | z = 0.5*(zl+zr) #Take average of field values |
---|
371 | |
---|
372 | w_left = q_left[0] #w=h+z |
---|
373 | h_left = w_left-z |
---|
374 | uh_left = q_left[1] |
---|
375 | |
---|
376 | if h_left < epsilon: |
---|
377 | u_left = 0.0 #Could have been negative |
---|
378 | h_left = 0.0 |
---|
379 | else: |
---|
380 | u_left = uh_left/(h_left + h0/h_left) |
---|
381 | |
---|
382 | |
---|
383 | uh_left = u_left*h_left |
---|
384 | |
---|
385 | w_right = q_right[0] #w=h+z |
---|
386 | h_right = w_right-z |
---|
387 | uh_right = q_right[1] |
---|
388 | |
---|
389 | |
---|
390 | if h_right < epsilon: |
---|
391 | u_right = 0.0 #Could have been negative |
---|
392 | h_right = 0.0 |
---|
393 | else: |
---|
394 | u_right = uh_right/(h_right + h0/h_right) |
---|
395 | |
---|
396 | uh_right = u_right*h_right |
---|
397 | |
---|
398 | #vh_left = q_left[2] |
---|
399 | #vh_right = q_right[2] |
---|
400 | |
---|
401 | #print h_right |
---|
402 | #print u_right |
---|
403 | #print h_left |
---|
404 | #print u_right |
---|
405 | |
---|
406 | soundspeed_left = sqrt(g*h_left) |
---|
407 | soundspeed_right = sqrt(g*h_right) |
---|
408 | |
---|
409 | #Maximal wave speed |
---|
410 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
411 | |
---|
412 | #Minimal wave speed |
---|
413 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
414 | |
---|
415 | #Flux computation |
---|
416 | |
---|
417 | #flux_left = array([u_left*h_left, |
---|
418 | # u_left*uh_left + 0.5*g*h_left**2]) |
---|
419 | #flux_right = array([u_right*h_right, |
---|
420 | # u_right*uh_right + 0.5*g*h_right**2]) |
---|
421 | flux_left = array([u_left*h_left, |
---|
422 | u_left*uh_left + 0.5*g*h_left*h_left]) |
---|
423 | flux_right = array([u_right*h_right, |
---|
424 | u_right*uh_right + 0.5*g*h_right*h_right]) |
---|
425 | |
---|
426 | denom = s_max-s_min |
---|
427 | if denom == 0.0: |
---|
428 | edgeflux = array([0.0, 0.0]) |
---|
429 | max_speed = 0.0 |
---|
430 | else: |
---|
431 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
432 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
433 | |
---|
434 | edgeflux[1] = edgeflux[1]*normal |
---|
435 | |
---|
436 | max_speed = max(abs(s_max), abs(s_min)) |
---|
437 | |
---|
438 | return edgeflux, max_speed |
---|
439 | |
---|
440 | |
---|
441 | #------------------------------------------------------------- |
---|
442 | if __name__ == "__main__": |
---|
443 | suite = unittest.makeSuite(Test_Shallow_Water, 'test') |
---|
444 | #suite = unittest.makeSuite(Test_Quantity, 'test_set_values_from_file_using_polygon') |
---|
445 | |
---|
446 | #suite = unittest.makeSuite(Test_Quantity, 'test_set_vertex_values_using_general_interface_with_subset') |
---|
447 | #print "restricted test" |
---|
448 | #suite = unittest.makeSuite(Test_Quantity,'verbose_test_set_values_from_UTM_pts') |
---|
449 | runner = unittest.TextTestRunner() |
---|
450 | runner.run(suite) |
---|