""" Script for running a breaking wave simulation of Jon Hinwoods wave tank. Note: this is based on the frinction_ua_flume_2006 structure. Duncan Gray, GA - 2007 """ #---------------------------------------------------------------------------- # Import necessary modules #---------------------------------------------------------------------------- # Standard modules import time from time import localtime, strftime import sys from shutil import copy from os import path, sep from os.path import dirname #, basename from math import sin, pi # Related major packages from anuga.shallow_water import Domain, Reflective_boundary, \ Dirichlet_boundary, Time_boundary, \ File_boundary, \ Transmissive_Momentum_Set_Stage_boundary from anuga.fit_interpolate.interpolate import interpolate_sww2csv from anuga.abstract_2d_finite_volumes.util import copy_code_files, \ file_function from anuga.shallow_water.data_manager import start_screen_catcher from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ import File_boundary_time # Scenario specific imports import project # Definition of file names and polygons import create_mesh def elevation_function(x,y): from Numeric import zeros, size, Float z = zeros(size(x), Float) for i in range(len(x)): if x[i] <= 0: # swash z[i] = -0.05*x[i] #z[i] = -30 elif x[i] <= 1000: # surf z[i] = -0.15*(x[i]**(0.5)) #z[i] = -30 else: # Nominal shoreface z[i] = -0.01888*(x[i]**(0.8)) #z[i] = -30 #>>> -0.15*(1000**0.5) #-4.7434164902525691 #>>> 0.01888*(1000**0.8) #4.7424415826900885 #>>> -0.01888*10000**0.8 #-29.922783473665834 return z def main(friction=0.01, outputdir_name=None, is_trial_run=False): basename = 'zz' + str(friction) if is_trial_run is True: outputdir_name += '_test' yieldstep = 1 finaltime = 100. maximum_triangle_area=3000 thinner=True else: yieldstep = 1. finaltime = 1600 finaltime = 100 maximum_triangle_area = 100 thinner=True pro_instance = project.Project(['results'], outputdir_name=outputdir_name, home='.') print "The output dir is", pro_instance.outputdir copy_code_files(pro_instance.outputdir,__file__, dirname(project.__file__) \ + sep + project.__name__+'.py') copy (pro_instance.codedir + 'run_beach.py', pro_instance.outputdir + 'run_beach.py') copy (pro_instance.codedir + 'create_mesh.py', pro_instance.outputdir + 'create_mesh.py') #mesh_filename = pro_instance.meshdir + basename + '.tsh' mesh_filename = pro_instance.meshdir + basename + '.msh' #-------------------------------------------------------------------------- # Copy scripts to output directory and capture screen # output to file #-------------------------------------------------------------------------- # creates copy of code in output dir if is_trial_run is False: start_screen_catcher(pro_instance.outputdir) #, rank, pypar.size()) print 'USER: ', pro_instance.user #------------------------------------------------------------------------- # Create the triangular mesh #------------------------------------------------------------------------- # this creates the mesh #gate_position = 12.0 create_mesh.generate(mesh_filename, maximum_triangle_area=maximum_triangle_area, thinner=thinner) head,tail = path.split(mesh_filename) copy (mesh_filename, pro_instance.outputdir + tail ) #------------------------------------------------------------------------- # Setup computational domain #------------------------------------------------------------------------- domain = Domain(mesh_filename, use_cache = False, verbose = True) print 'Number of triangles = ', len(domain) print 'The extent is ', domain.get_extent() print domain.statistics() domain.set_name(basename) domain.set_datadir(pro_instance.outputdir) domain.set_default_order(2) # Use second order spatial scheme domain.set_timestepping_method('rk2') domain.beta_uh = 1.5 domain.beta_vh = 1.5 # comment out aserts in shallow_water/shallow_water_domain.py", line 402 # if you want to use these values #domain.beta_h = 1.5 #domain.beta_w = 1.5 domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) domain.set_minimum_storable_height(0.001) #domain.set_store_vertices_uniquely(True) # for writting to sww #------------------------------------------------------------------------- # Setup initial conditions #------------------------------------------------------------------------- domain.set_quantity('stage', 0.0) domain.set_quantity('friction', friction) domain.set_quantity('elevation', elevation_function) print 'Available boundary tags', domain.get_boundary_tags() # Create boundary function from timeseries provided in file #function = file_function(project.boundary_file, domain, verbose=True) #Bts = Transmissive_Momentum_Set_Stage_boundary(domain, function) Br = Reflective_boundary(domain) Bd = Dirichlet_boundary([10.,0,0]) Bwp = Transmissive_Momentum_Set_Stage_boundary(domain, lambda t: [(1.2*sin(2*t*pi/10)), 0.0 ,0.0]) domain.set_boundary( {'wall': Br, 'wave': Bwp} ) #------------------------------------------------------------------------- # Evolve system through time #------------------------------------------------------------------------- t0 = time.time() for t in domain.evolve(yieldstep, finaltime): domain.write_time() print 'That took %.2f seconds' %(time.time()-t0) print 'finished' #------------------------------------------------------------------------- # Calculate gauge info #------------------------------------------------------------------------- return pro_instance #------------------------------------------------------------- if __name__ == "__main__": main( is_trial_run = False, friction=0.0, outputdir_name='Primary_wave_2nd_order_rk2_wet_betas_1.5')