1 | """Script for running the 2004 boxing Day tsunami inundation scenario for |
---|
2 | Phuket, Thailand. |
---|
3 | |
---|
4 | Source data such as elevation and boundary data is assumed to be available in |
---|
5 | directories specified by project.py |
---|
6 | The output sww file is stored in directory named after the scenario, i.e |
---|
7 | slide or fixed_wave. |
---|
8 | |
---|
9 | The scenario is defined by a triangular mesh created from project.polygon, |
---|
10 | the elevation data and a tsunami wave generated by a submarine mass failure. |
---|
11 | |
---|
12 | Author: John Jakeman, The Australian National University (2008) |
---|
13 | """ |
---|
14 | |
---|
15 | #------------------------------------------------------------------------------ |
---|
16 | # Import necessary modules |
---|
17 | #------------------------------------------------------------------------------ |
---|
18 | |
---|
19 | # Standard modules |
---|
20 | import os |
---|
21 | import time |
---|
22 | import sys |
---|
23 | from time import localtime, strftime |
---|
24 | |
---|
25 | # Related major packages |
---|
26 | from anuga.shallow_water import Domain |
---|
27 | from anuga.shallow_water import Reflective_boundary |
---|
28 | from anuga.shallow_water import Dirichlet_boundary |
---|
29 | from anuga.shallow_water import Time_boundary |
---|
30 | from anuga.shallow_water import File_boundary |
---|
31 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
32 | from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf, ferret2sww |
---|
33 | from anuga.shallow_water.data_manager import dem2pts |
---|
34 | from anuga.coordinate_transforms.redfearn import convert_from_latlon_to_utm |
---|
35 | from anuga.utilities.polygon import number_mesh_triangles |
---|
36 | from anuga.fit_interpolate.fit import fit_to_mesh_file |
---|
37 | from anuga.caching import cache |
---|
38 | from anuga.abstract_2d_finite_volumes.pmesh2domain import pmesh_to_domain_instance |
---|
39 | |
---|
40 | # Application specific imports |
---|
41 | import project # Definition of file names and polygons |
---|
42 | |
---|
43 | |
---|
44 | #------------------------------------------------------------------------------ |
---|
45 | # Define scenario as either slide or fixed_wave. |
---|
46 | #------------------------------------------------------------------------------ |
---|
47 | |
---|
48 | #scenario = 'poor_simulation' |
---|
49 | scenario = 'good_simulation' |
---|
50 | |
---|
51 | if os.access(scenario, os.F_OK) == 0: |
---|
52 | os.mkdir(scenario) |
---|
53 | |
---|
54 | timestamp = strftime('%Y%m%d_%H%M%S',localtime()) |
---|
55 | basename = scenario[:4] + '_polyline' |
---|
56 | |
---|
57 | |
---|
58 | #------------------------------------------------------------------------------ |
---|
59 | # Preparation of topographic data |
---|
60 | # Convert ASC 2 DEM 2 PTS using source data and store result in source data |
---|
61 | #------------------------------------------------------------------------------ |
---|
62 | |
---|
63 | if scenario == 'good_simualation': |
---|
64 | msg = 'Must use combine_good_data to create bathymetry .pts file' |
---|
65 | assert os.path.exists(project.good_combined_dir_name+'.pts'), msg |
---|
66 | |
---|
67 | #------------------------------------------------------------------------------ |
---|
68 | # Create the triangular mesh based on overall clipping polygon with a tagged |
---|
69 | # boundary and interior regions defined in project.py along with |
---|
70 | # resolutions (maximal area of per triangle) for each polygon |
---|
71 | #------------------------------------------------------------------------------ |
---|
72 | extent_res = 1000000.0 |
---|
73 | contour20m_res = 50000.0 |
---|
74 | island_res = 5000.0 |
---|
75 | bay_res = 2000.0 |
---|
76 | patong_res = 400.0 |
---|
77 | |
---|
78 | |
---|
79 | # make polygon that contains land that does not affect result. |
---|
80 | |
---|
81 | interior_regions = [[project.patong, patong_res], |
---|
82 | [project.bay, bay_res], |
---|
83 | [project.contour20m, contour20m_res]]#, |
---|
84 | #[project.island_north, island_res], |
---|
85 | #[project.island_south, island_res], |
---|
86 | #[project.island_south2, island_res]] |
---|
87 | |
---|
88 | |
---|
89 | #for coarse run to test gauges |
---|
90 | #extent_res = 10000000.0 |
---|
91 | #interior_regions=None |
---|
92 | |
---|
93 | from Numeric import arange,allclose |
---|
94 | boundary_tags={'ocean': arange(0,41).tolist(), 'otherocean': [41,44], 'land': [42,43]} |
---|
95 | |
---|
96 | #trigs_min = number_mesh_triangles(interior_regions, project.bounding_polygon,extent_res) |
---|
97 | #print 'Minimum number of traingles ', trigs_min |
---|
98 | |
---|
99 | # filenames |
---|
100 | meshname = project.meshname + '_polyline.tsh' |
---|
101 | mesh_elevname = project.mesh_elevname + '_polyline.tsh' |
---|
102 | |
---|
103 | print 'start create mesh from regions' |
---|
104 | |
---|
105 | _ = cache(create_mesh_from_regions, |
---|
106 | project.bounding_polygon, |
---|
107 | {'boundary_tags': boundary_tags, |
---|
108 | 'maximum_triangle_area': extent_res, |
---|
109 | 'filename': meshname, |
---|
110 | 'interior_regions': interior_regions}, |
---|
111 | verbose = True, |
---|
112 | dependencies = ['project.py'] |
---|
113 | #, evaluate=True |
---|
114 | ) |
---|
115 | |
---|
116 | |
---|
117 | #------------------------------------------------------------------------------ |
---|
118 | # Setup computational domain |
---|
119 | #------------------------------------------------------------------------------ |
---|
120 | print 'Converting mesh to domain' |
---|
121 | |
---|
122 | #domain = Domain(meshname, use_cache=False, verbose=True) |
---|
123 | |
---|
124 | domain = cache(pmesh_to_domain_instance, |
---|
125 | (meshname, Domain), |
---|
126 | dependencies = [meshname]) |
---|
127 | |
---|
128 | print 'The extent is ', domain.get_extent() |
---|
129 | print domain.statistics() |
---|
130 | |
---|
131 | domain.set_name(basename+timestamp) |
---|
132 | #domain.set_name(basename) |
---|
133 | domain.set_datadir(scenario) |
---|
134 | domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) |
---|
135 | domain.set_minimum_storable_height(0.01) |
---|
136 | |
---|
137 | domain.tight_slope_limiters = 1 |
---|
138 | domain.set_default_order(2) |
---|
139 | print 'domain.tight_slope_limiters', domain.tight_slope_limiters |
---|
140 | |
---|
141 | domain.points_file_block_line_size = 50000 |
---|
142 | |
---|
143 | #------------------------------------------------------------------------------ |
---|
144 | # Setup initial conditions |
---|
145 | #------------------------------------------------------------------------------ |
---|
146 | |
---|
147 | tide = 0.0 |
---|
148 | domain.set_quantity('stage', tide) |
---|
149 | domain.set_quantity('friction', 0.01) |
---|
150 | |
---|
151 | if scenario == 'poor_simulation': |
---|
152 | domain.set_quantity('elevation', |
---|
153 | filename=project.poor_combined_dir_name + '.pts', |
---|
154 | use_cache=True, |
---|
155 | verbose=True, |
---|
156 | alpha=0.1) |
---|
157 | |
---|
158 | if scenario == 'good_simulation': |
---|
159 | domain.set_quantity('elevation', |
---|
160 | filename=project.good_combined_dir_name + '.pts', |
---|
161 | use_cache=True, |
---|
162 | verbose=True, |
---|
163 | alpha=0.1) |
---|
164 | #------------------------------------------------------------------------------ |
---|
165 | # Setup boundary conditions |
---|
166 | #------------------------------------------------------------------------------ |
---|
167 | boundary_urs_in='data/boxing' |
---|
168 | boundary_urs_out=project.base_name |
---|
169 | |
---|
170 | print 'Available boundary tags', domain.get_boundary_tags() |
---|
171 | Bf = File_boundary(boundary_urs_out+'.sts', |
---|
172 | domain, time_thinning=1, |
---|
173 | use_cache=True,verbose = True,boundary_polygon=project.bounding_polygon) |
---|
174 | |
---|
175 | Br = Reflective_boundary(domain) |
---|
176 | Bd = Dirichlet_boundary([tide,0.0,0.0]) |
---|
177 | |
---|
178 | domain.set_boundary({'ocean': Bf, |
---|
179 | 'otherocean': Bd, |
---|
180 | 'land': Br, |
---|
181 | 'both': Bd}) |
---|
182 | |
---|
183 | #------------------------------------------------------------------------------ |
---|
184 | # Evolve system through time |
---|
185 | #------------------------------------------------------------------------------ |
---|
186 | import time |
---|
187 | t0 = time.time() |
---|
188 | |
---|
189 | #from Numeric import allclose |
---|
190 | #from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
191 | |
---|
192 | # Add new loop that uses larger yieldstep until wave first reaches a point of |
---|
193 | # the ANUGA boundary. Or find a way to clip MOST sww boundary file to only |
---|
194 | # start when boundary stage first becomes non-zero. |
---|
195 | |
---|
196 | for t in domain.evolve(yieldstep = 20.0, finaltime = 18000.0, |
---|
197 | skip_initial_step = False): |
---|
198 | if allclose(t,10800.0): |
---|
199 | print 'Changing urs file boundary to dirichlet. Urs gauges only have 3 hours of data' |
---|
200 | domain.set_boundary({'ocean': Bd, |
---|
201 | 'otherocean': Bd, |
---|
202 | 'land': Br, |
---|
203 | 'both': Bd}) |
---|
204 | |
---|
205 | domain.write_time() |
---|
206 | |
---|
207 | print 'That took %.2f seconds' %(time.time()-t0) |
---|