1 | """Simple water flow example using ANUGA |
---|
2 | """ |
---|
3 | |
---|
4 | #------------------------------------------------------------------------------ |
---|
5 | # Import necessary modules |
---|
6 | #------------------------------------------------------------------------------ |
---|
7 | from anuga.abstract_2d_finite_volumes.mesh_factory import * |
---|
8 | from anuga.shallow_water import * |
---|
9 | from anuga.shallow_water.shallow_water_domain import * |
---|
10 | from math import * |
---|
11 | from numpy import * |
---|
12 | import numpy |
---|
13 | from matplotlib import * |
---|
14 | from pylab import * |
---|
15 | import csv |
---|
16 | |
---|
17 | #Parameters |
---|
18 | |
---|
19 | filename = "WORKING-RIP-LAB_Expt-Geometry_Triangular_Mesh" |
---|
20 | location_of_shore = 140 #the position along the y axis of the shorefront |
---|
21 | sandbar = 1.2 #height of sandbar |
---|
22 | sealevel = 0 #height of coast above sea level |
---|
23 | steepness = 8000 #period of sandbar - larger number gives smoother slope - longer period |
---|
24 | halfchannelwidth = 5 |
---|
25 | bank_slope = 0.1 |
---|
26 | simulation_length = 1 |
---|
27 | timestep = 1 |
---|
28 | |
---|
29 | #------------------------------------------------------------------------------ |
---|
30 | # Setup computational domain |
---|
31 | #------------------------------------------------------------------------------ |
---|
32 | length = 120 |
---|
33 | width = 170 |
---|
34 | seafloor_resolution = 60.0 # Resolution: Max area of triangles in the mesh for seafloor |
---|
35 | feature_resolution = 1.0 |
---|
36 | beach_resolution = 10.0 |
---|
37 | |
---|
38 | sea_boundary_polygon = [[0,0],[length,0],[length,width],[0,width]] |
---|
39 | feature_boundary_polygon = [[0,100],[length,100],[length,150],[0,150]] |
---|
40 | beach_interior_polygon = [[0,150],[length,150],[length,width],[0,width]] |
---|
41 | |
---|
42 | meshname = str(filename)+'.msh' |
---|
43 | |
---|
44 | #interior regions |
---|
45 | feature_regions = [[feature_boundary_polygon, feature_resolution], |
---|
46 | [beach_interior_polygon, beach_resolution]] |
---|
47 | |
---|
48 | create_mesh_from_regions(sea_boundary_polygon, |
---|
49 | boundary_tags={'bottom': [0], |
---|
50 | 'right' : [1], |
---|
51 | 'top' : [2], |
---|
52 | 'left': [3]}, |
---|
53 | maximum_triangle_area = seafloor_resolution, |
---|
54 | filename = meshname, |
---|
55 | interior_regions = feature_regions, |
---|
56 | use_cache = False, |
---|
57 | verbose = False) |
---|
58 | domain = Domain(meshname, use_cache=True, verbose=True) |
---|
59 | domain.set_name(filename) # Output name |
---|
60 | print domain.statistics() |
---|
61 | |
---|
62 | #------------------------------------------------------------------------------ |
---|
63 | # Setup initial conditions |
---|
64 | #------------------------------------------------------------------------------ |
---|
65 | |
---|
66 | def topography(x,y): |
---|
67 | """Complex topography defined by a function of vectors x and y.""" |
---|
68 | |
---|
69 | #general slope and buildings |
---|
70 | z=0.05*(y-(location_of_shore)) |
---|
71 | |
---|
72 | N = len(x) |
---|
73 | for i in range(N): |
---|
74 | if y[i] < 25: |
---|
75 | z[i] = (0.2*(y[i]-25)) + 0.05*(y[i]-(location_of_shore)) |
---|
76 | for i in range(N): |
---|
77 | if y[i]>150: |
---|
78 | z[i] = (0.1*(y[i]-150)) + 0.05*(y[i] - (location_of_shore)) |
---|
79 | |
---|
80 | return z |
---|
81 | |
---|
82 | |
---|
83 | def topography3(x,y): |
---|
84 | z=0*x |
---|
85 | |
---|
86 | N = len(x) |
---|
87 | for i in range(N): |
---|
88 | if -1*(bank_slope)*x[i] + 112 < y[i] < -1*(bank_slope)*x[i] + 124 and 0<x[i]<((length/2)-halfchannelwidth): |
---|
89 | z[i] += sandbar*((cos((y[i]-118)/steepness))) |
---|
90 | for i in range(N): |
---|
91 | if -1*(bank_slope)*(x[i]-(length/2)) + (-1*(bank_slope)*(length/2)+112) < y[i] < -1*(bank_slope)*(x[i]-(length/2)) + (-1*(bank_slope)*(length/2)+124) and ((length/2)+halfchannelwidth)<x[i]<183: |
---|
92 | z[i] += sandbar*(cos((y[i]-118)/steepness)) |
---|
93 | return z |
---|
94 | |
---|
95 | domain.set_quantity('elevation', topography) # elevation is a function |
---|
96 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
97 | |
---|
98 | domain.add_quantity('elevation', topography3) |
---|
99 | |
---|
100 | domain.set_quantity('stage', 0) # Dry initial condition |
---|
101 | |
---|
102 | #------------------------------------------------------------------------------ |
---|
103 | # Setup boundary conditions |
---|
104 | #------------------------------------------------------------------------------ |
---|
105 | Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow |
---|
106 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
107 | Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow |
---|
108 | |
---|
109 | |
---|
110 | amplitude = 0.4 #amplitude of wave (wave height m) |
---|
111 | period = 5 #wave period (sec) |
---|
112 | |
---|
113 | def wave(t): |
---|
114 | |
---|
115 | A = amplitude # Amplitude [m] (Wave height) |
---|
116 | T = period # Wave period [s] |
---|
117 | |
---|
118 | if t < 30000000000: |
---|
119 | return [A*sin(2*pi*t/T) + 1, 0, 0] |
---|
120 | else: |
---|
121 | return [0.0, 0, 0] |
---|
122 | |
---|
123 | Bt = Time_boundary(domain, f=wave) |
---|
124 | |
---|
125 | |
---|
126 | domain.set_boundary({'left': Br, 'right': Br, 'top': Bo, 'bottom': Bt}) |
---|
127 | |
---|
128 | #------------------------------------------------------------------------------ |
---|
129 | # Evolve system through time |
---|
130 | #------------------------------------------------------------------------------ |
---|
131 | |
---|
132 | list1 = [x for x in csv.reader(open('New_gauges.csv','r'),dialect='excel',delimiter=",") ] |
---|
133 | |
---|
134 | print list1 |
---|
135 | |
---|
136 | u = numpy.zeros(len(list1), 'd') |
---|
137 | v = numpy.zeros(len(list1), 'd') |
---|
138 | |
---|
139 | |
---|
140 | for t in domain.evolve(yieldstep = (timestep), finaltime = (simulation_length)): |
---|
141 | print domain.timestepping_statistics() |
---|
142 | S = domain.get_quantity('stage').get_values(interpolation_points=list1) |
---|
143 | E = domain.get_quantity('elevation').get_values(interpolation_points=list1) |
---|
144 | depth = S-E |
---|
145 | |
---|
146 | uh = domain.get_quantity('xmomentum').get_values(interpolation_points=list1) |
---|
147 | vh = domain.get_quantity('ymomentum').get_values(interpolation_points=list1) |
---|
148 | u += uh/depth |
---|
149 | v += vh/depth |
---|
150 | |
---|
151 | n_time_intervals = (simulation_length)/(timestep) |
---|
152 | u_average = u / (n_time_intervals) |
---|
153 | v_average = v / (n_time_intervals) |
---|
154 | |
---|
155 | print "there were", n_time_intervals, "time steps" |
---|
156 | |
---|
157 | print "sum y velocity", v |
---|
158 | print "average y velocity", v_average |
---|
159 | print "sum x velocity", u |
---|
160 | print "average x velocity", u_average |
---|
161 | |
---|
162 | x_output = file("x_velocity.txt", 'w') |
---|
163 | y_output = file("y_velocity.txt", 'w') |
---|
164 | |
---|
165 | print >> x_output, " " |
---|
166 | print >> y_output, " " |
---|
167 | |
---|
168 | print >> x_output, u_average |
---|
169 | print >> y_output, v_average |
---|
170 | |
---|
171 | X = [x[0] for x in csv.reader(open('New_gauges.csv','r'),dialect='excel',delimiter=",") ] |
---|
172 | Y = [x[1] for x in csv.reader(open('New_gauges.csv','r'),dialect='excel',delimiter=",") ] |
---|
173 | U = u_average.tolist() |
---|
174 | V = v_average.tolist() |
---|
175 | |
---|
176 | print "U = ", U |
---|
177 | print "U has type", type(U) |
---|
178 | |
---|
179 | |
---|
180 | from matplotlib import * |
---|
181 | from pylab import * |
---|
182 | |
---|
183 | figure() |
---|
184 | quiver(X,Y,U,V) |
---|
185 | show() |
---|
186 | |
---|
187 | |
---|