1 | """Simple water flow example using ANUGA |
---|
2 | |
---|
3 | This program can be used to write some text and water it become covered by water! |
---|
4 | """ |
---|
5 | ######################THIS IS THE SECTION TO PUT YOUR TEXT INTO######################################################## |
---|
6 | |
---|
7 | letter_number = 5 #the number of letters in the text you wish to spell with water (include spaces as letters when counting) |
---|
8 | |
---|
9 | your_text = ['A','N','U','G','A'] #put your text in here following the format shown use 'space' to put in a space |
---|
10 | |
---|
11 | #--------------------------------------------------------------------------------------------------------------------------------------------------------------- |
---|
12 | ##########Parameters - These values are intended to be experimented with to produce different results########################################################### |
---|
13 | #--------------------------------------------------------------------------------------------------------------------------------------------------------------- |
---|
14 | |
---|
15 | depth = -50 #the elevation of the channel cut by the letters (negative number gives channels cutting into the surface, |
---|
16 | #positive gives peaks rising up from the surface). Channels generally look better. |
---|
17 | |
---|
18 | letter_height = 80 #the height of each letter |
---|
19 | letter_width = 80 #the width of each letter |
---|
20 | letter_thickness = 7 #the thickness of each letter |
---|
21 | |
---|
22 | slope = -0.1 #the slope of the surface (negative number gives a downslope, positive gives an upslope) |
---|
23 | |
---|
24 | inflow_amount = 25 #controls the volume of water which flows into the model |
---|
25 | outflow_amount = -50 #controls the volume of water which flows out of the model |
---|
26 | |
---|
27 | amplitude = 50 #amplitude of wave (wave height m) if you want to use a wave change a boundary to Bt |
---|
28 | period = 10 #wave period (sec) if you want to use a wave change a boundary to Bt |
---|
29 | |
---|
30 | left_boundary = 'Bi' #Sets up the boundary conditions for the model, Bt calls a wave input (use it to see a series of waves wash across the model) |
---|
31 | right_boundary = 'Bo' # Bi calls a constant inflow amount (defined above) while Bo calls a constant outflow amount |
---|
32 | top_boundary = 'Br' # Br causes any flow that contacts the boundary to be reflected back from it (the reflected flows momentum has equal magnitude but opposite direction to the incident flow) |
---|
33 | bottom_boundary = 'Br' |
---|
34 | |
---|
35 | simulation_speed = 1 #smaller number gives a slower, more precise simulation. |
---|
36 | #Very low numbers e.g. 0.1 will make the animation appear to run in slow motion |
---|
37 | simulation_length = 18*letter_number #the number of seconds that the simulation runs for |
---|
38 | |
---|
39 | #-------------------------------------------------------------------------------------------------------------------------------------------------------- |
---|
40 | ######################################################################################################################################################### |
---|
41 | #Please ensure that you understand what the program is doing and what you are changing before changing any of the values below this point################ |
---|
42 | ######################################################################################################################################################### |
---|
43 | #-------------------------------------------------------------------------------------------------------------------------------------------------------- |
---|
44 | |
---|
45 | # Standard modules |
---|
46 | import os |
---|
47 | import time |
---|
48 | import sys |
---|
49 | #------------------------------------------------------------------------------ |
---|
50 | # Import necessary modules |
---|
51 | #------------------------------------------------------------------------------ |
---|
52 | from anuga.abstract_2d_finite_volumes.mesh_factory import * |
---|
53 | from anuga.abstract_2d_finite_volumes.domain import * |
---|
54 | from anuga.shallow_water import * |
---|
55 | from anuga.shallow_water.shallow_water_domain import * |
---|
56 | from anuga.shallow_water.data_manager import * |
---|
57 | from math import * |
---|
58 | from numpy import * |
---|
59 | from numpy import sin, cos, pi |
---|
60 | #-------------------------------------------------------------------------------------------------------------------------------------------------------- |
---|
61 | # Setup computational domain |
---|
62 | #------------------------------------------------------------------------------ |
---|
63 | length = (letter_width)*(letter_number) +0.2*letter_width |
---|
64 | width = (letter_height)*1.3 |
---|
65 | dx = dy = 5 # Resolution: Length of subdivisions on both axes |
---|
66 | |
---|
67 | points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), |
---|
68 | len1=length, len2=width) |
---|
69 | domain = Domain(points, vertices, boundary) |
---|
70 | domain.set_name('Spell_Your_Name_With_Water')# Output name |
---|
71 | domain.set_datadir('.') #store sww output here |
---|
72 | |
---|
73 | #------------------------------------------------------------------------------ |
---|
74 | # Setup initial conditions |
---|
75 | #------------------------------------------------------------------------------ |
---|
76 | def topography(x,y): |
---|
77 | """Complex topography defined by a function of vectors x and y.""" |
---|
78 | |
---|
79 | #general slope and buildings |
---|
80 | z = slope*x + 0.1*(cos(x)+cos(y))+ 5 |
---|
81 | return z |
---|
82 | |
---|
83 | #BUILD TOPOGRAPHY from functions defining letters (above)############################ |
---|
84 | domain.set_quantity('elevation', topography) # elevation is a function |
---|
85 | |
---|
86 | N = len(your_text) #the number of letters in the word to be spelt |
---|
87 | print "the length of the text is", N, "letters" |
---|
88 | |
---|
89 | print your_text |
---|
90 | |
---|
91 | for k in range(N): |
---|
92 | current_letter = your_text[k] #the letter that is currently being plotted |
---|
93 | print "the current letter is", current_letter |
---|
94 | |
---|
95 | #brute force approach |
---|
96 | def A(x,y): |
---|
97 | z = 0*x |
---|
98 | N = len(x) |
---|
99 | for i in range(N): |
---|
100 | ymin = ((letter_height)/((letter_width)/2))*(x[i]- (k)*letter_width) |
---|
101 | ymax = ((letter_height)/((letter_width)/2))*(x[i]- (k)*letter_width) + letter_thickness |
---|
102 | xmin = 0 |
---|
103 | xmax = 0.5*letter_width |
---|
104 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
105 | z[i] += depth |
---|
106 | for i in range(N): |
---|
107 | ymin = ((-letter_height)/((letter_width)/2))*(x[i]-(0.5*letter_width+ (k)*letter_width)) + letter_height |
---|
108 | ymax = ((-letter_height)/((letter_width)/2))*(x[i]-(0.5*letter_width+ (k)*letter_width)) + letter_height + letter_thickness |
---|
109 | xmin = 0.5*letter_width |
---|
110 | xmax = letter_width |
---|
111 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
112 | z[i] += depth |
---|
113 | for i in range(N): |
---|
114 | ymin = letter_height/2 - 0.5*letter_thickness |
---|
115 | ymax = letter_height/2 + 0.5*letter_thickness |
---|
116 | xmin = (letter_height/2)/((letter_height)/((letter_width)/2)) |
---|
117 | xmax = ((letter_height/2)- letter_height)/((-letter_height)/((letter_width)/2)) + 0.5*letter_width |
---|
118 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
119 | z[i] += depth |
---|
120 | |
---|
121 | return z |
---|
122 | |
---|
123 | def B(x,y): |
---|
124 | z = 0*x |
---|
125 | N = len(x) |
---|
126 | for i in range(N): |
---|
127 | ymin = 0 |
---|
128 | ymax = letter_height |
---|
129 | xmin = 0.5*letter_thickness |
---|
130 | xmax = 2*letter_thickness |
---|
131 | if ymin < y[i] < ymax and xmin + (k+0.05)*letter_width< x[i] < xmax+ (k+0.05)*letter_width: |
---|
132 | z[i] += depth |
---|
133 | for i in range(N): |
---|
134 | if (x[i]-((letter_width/2)-10+ (k+0.05)*letter_width))**2+(y[i]-(0.25*letter_height))**2<((letter_height/4))**2 and letter_thickness + (k+0.05)*letter_width< x[i]: |
---|
135 | z[i] += depth |
---|
136 | if (x[i]-((letter_width/2)-10+ (k-0.05)*letter_width))**2+(y[i]-(0.25*letter_height))**2<(((letter_height/4)-0.6*letter_thickness))**2 and letter_thickness + (k-0.1)*letter_width< x[i]: |
---|
137 | z[i] += -1*depth |
---|
138 | if (x[i]-((letter_width/2)-10+ (k+0.05)*letter_width))**2+(y[i]-(0.75*letter_height))**2<((letter_height/4))**2 and letter_thickness + (k+0.05)*letter_width< x[i]: |
---|
139 | z[i] += depth |
---|
140 | if (x[i]-((letter_width/2)-10+ (k-0.05)*letter_width))**2+(y[i]-(0.75*letter_height))**2<(((letter_height/4)-0.6*letter_thickness))**2 and letter_thickness + (k-0.1)*letter_width< x[i]: |
---|
141 | z[i] += -1*depth |
---|
142 | for i in range(N): |
---|
143 | ymin = (letter_height/2)-5 |
---|
144 | ymax = (letter_height/2)+5 |
---|
145 | xmin = 0.5*letter_thickness |
---|
146 | xmax = 0.3*letter_width |
---|
147 | if ymin < y[i] < ymax and xmin+ (k+0.05)*letter_width < x[i] < xmax+ (k+0.05)*letter_width: |
---|
148 | z[i] += depth |
---|
149 | return z |
---|
150 | |
---|
151 | def C(x,y): |
---|
152 | z = 0*x |
---|
153 | N = len(x) |
---|
154 | for i in range(N): |
---|
155 | if (x[i]-(letter_width/2 + (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*(letter_height/2))**2 and 0 + (k)*letter_width < x[i] < 0.80*letter_width + (k)*letter_width: |
---|
156 | z[i] += depth |
---|
157 | if (x[i]-(letter_width/2 + (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*((letter_height/2)-letter_thickness))**2 and 0 + (k)*letter_width < x[i] < 0.80*letter_width + (k)*letter_width: |
---|
158 | z[i] += -1*depth |
---|
159 | return z |
---|
160 | |
---|
161 | def D(x,y): |
---|
162 | z = 0*x |
---|
163 | N = len(x) |
---|
164 | for i in range(N): |
---|
165 | ymin = 0 |
---|
166 | ymax = letter_height |
---|
167 | xmin = 0.5*letter_thickness |
---|
168 | xmax = 3*letter_thickness |
---|
169 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax + (k)*letter_width: |
---|
170 | z[i] += depth |
---|
171 | if (x[i]-((letter_width/2)+ (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*(letter_height/2))**2 and 1.9*letter_thickness + (k)*letter_width < x[i] : |
---|
172 | z[i] += depth |
---|
173 | if (x[i]-((letter_width/2)+ (k-0.15)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*((letter_height/2)-1.3*letter_thickness))**2 and 1.9*letter_thickness + (k)*letter_width < x[i]: |
---|
174 | z[i] += -1*depth |
---|
175 | return z |
---|
176 | |
---|
177 | def E(x,y): |
---|
178 | z = 0*x |
---|
179 | N = len(x) |
---|
180 | for i in range(N): |
---|
181 | if 0 < y[i] < letter_height and 0.5*letter_thickness + (k)*letter_width < x[i] < 2*letter_thickness+ (k)*letter_width: |
---|
182 | z[i] += depth |
---|
183 | if (1-0.01*letter_thickness)*letter_height < y[i] < letter_height and 1.9*letter_thickness + (k)*letter_width < x[i] < 0.8*letter_width+ (k)*letter_width: |
---|
184 | z[i] += depth |
---|
185 | if (0.5-0.005*letter_thickness)*letter_height < y[i] < (0.5+0.005*letter_thickness)*letter_height and 1.9*letter_thickness + (k)*letter_width< x[i] < 0.8*letter_width+ (k)*letter_width: |
---|
186 | z[i] += depth |
---|
187 | if 0 < y[i] < 0.01*letter_thickness*letter_height and 1.9*letter_thickness + (k)*letter_width< x[i] < 0.8*letter_width+ (k)*letter_width: |
---|
188 | z[i] += depth |
---|
189 | return z |
---|
190 | |
---|
191 | def F(x,y): |
---|
192 | z = 0*x |
---|
193 | N = len(x) |
---|
194 | for i in range(N): |
---|
195 | if 0 < y[i] < letter_height and 0.5*letter_thickness + (k)*letter_width< x[i] < 2*letter_thickness+ (k)*letter_width: |
---|
196 | z[i] += depth |
---|
197 | if (1-0.01*letter_thickness)*letter_height < y[i] < letter_height and 1.9*letter_thickness + (k)*letter_width< x[i] < 0.8*letter_width+ (k)*letter_width: |
---|
198 | z[i] += depth |
---|
199 | if (0.5-0.005*letter_thickness)*letter_height < y[i] < (0.5+0.005*letter_thickness)*letter_height and 1.9*letter_thickness + (k)*letter_width< x[i] < 0.8*letter_width+ (k)*letter_width: |
---|
200 | z[i] += depth |
---|
201 | return z |
---|
202 | |
---|
203 | def G(x,y): |
---|
204 | z = 0*x |
---|
205 | N = len(x) |
---|
206 | for i in range(N): |
---|
207 | if (x[i]-(letter_width/2+ (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*(letter_height/2))**2 and 0 + (k)*letter_width< x[i] < 0.80*letter_width+ (k)*letter_width: |
---|
208 | z[i] += depth |
---|
209 | if (x[i]-(letter_width/2+ (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*((letter_height/2)-letter_thickness))**2 and 0 + (k)*letter_width< x[i] < 0.80*letter_width+ (k)*letter_width: |
---|
210 | z[i] += -1*depth |
---|
211 | if (0.4-0.005*letter_thickness)*letter_height < y[i] < (0.4+0.005*letter_thickness)*letter_height and 0.5*letter_width + (k)*letter_width< x[i] < 0.95*letter_width+ (k)*letter_width: |
---|
212 | z[i] += depth |
---|
213 | if 0 < y[i] < 0.4*letter_height and (0.8-0.01*letter_thickness)*letter_width + (k)*letter_width< x[i] < 0.8*letter_width+ (k)*letter_width: |
---|
214 | z[i] += depth |
---|
215 | return z |
---|
216 | |
---|
217 | def H(x,y): |
---|
218 | z = 0*x |
---|
219 | N = len(x) |
---|
220 | for i in range(N): |
---|
221 | if 0 < y[i] < letter_height and 0.5*letter_thickness + (k)*letter_width< x[i] < 2*letter_thickness+ (k)*letter_width: |
---|
222 | z[i] += depth |
---|
223 | if 0 < y[i] < letter_height and (letter_width - 2*letter_thickness) + (k)*letter_width< x[i] < (letter_width -0.5*letter_thickness)+ (k)*letter_width: |
---|
224 | z[i] += depth |
---|
225 | if (0.5-0.005*letter_thickness)*letter_height < y[i] < (0.5+0.005*letter_thickness)*letter_height and 1.9*letter_thickness + (k)*letter_width< x[i] < (letter_width-1.9*letter_thickness)+ (k)*letter_width: |
---|
226 | z[i] += depth |
---|
227 | return z |
---|
228 | |
---|
229 | def I(x,y): |
---|
230 | z = 0*x |
---|
231 | N = len(x) |
---|
232 | for i in range(N): |
---|
233 | if 0 < y[i] < letter_height and (0.5-0.01*letter_thickness)*letter_width + (k)*letter_width< x[i] < (0.5+0.01*letter_thickness)*letter_width+ (k)*letter_width: |
---|
234 | z[i] += depth |
---|
235 | if (letter_height - 0.85*letter_thickness) < y[i] < letter_height and 0.3*letter_width + (k)*letter_width< x[i] < 0.7*letter_width+ (k)*letter_width: |
---|
236 | z[i] += depth |
---|
237 | if 0 < y[i] < 0.85*letter_thickness and 0.3*letter_width + (k)*letter_width< x[i] < 0.7*letter_width+ (k)*letter_width: |
---|
238 | z[i] += depth |
---|
239 | return z |
---|
240 | |
---|
241 | def J(x,y): |
---|
242 | z = 0*x |
---|
243 | N = len(x) |
---|
244 | for i in range(N): |
---|
245 | if y[i]< -(((0.9*(letter_height/2))**2 - (x[i]- (0.5*letter_width+ (k)*letter_width))**2)**0.5)+ 0.6*letter_height and 0<y[i]<0.3*letter_height: |
---|
246 | z[i] += depth |
---|
247 | if y[i]< -(((0.9*(letter_height/2))**2 - (x[i]- (0.5*letter_width+ (k)*letter_width))**2)**0.5)+ 0.5*letter_height and 0<y[i]<0.3*letter_height: |
---|
248 | z[i] += -depth |
---|
249 | if 0.2*letter_height < y[i] < letter_height and (0.83-0.01*letter_thickness)*letter_width + (k)*letter_width< x[i] < (0.83+0.01*letter_thickness)*letter_width+ (k)*letter_width: |
---|
250 | z[i] += depth |
---|
251 | return z |
---|
252 | |
---|
253 | def K(x,y): |
---|
254 | z = 0*x |
---|
255 | N = len(x) |
---|
256 | for i in range(N): |
---|
257 | if 0 < y[i] < letter_height and 0.5*letter_thickness + (k+0.2)*letter_width < x[i] < 2*letter_thickness + (k+0.2)*letter_width: |
---|
258 | z[i] += depth |
---|
259 | for i in range(N): |
---|
260 | ymin = ((0.5*letter_height)/((letter_width)))*(x[i]-(1.9*letter_thickness+ (k+0.2)*letter_width)) + 0.5*letter_height |
---|
261 | ymax = ((0.5*letter_height)/((letter_width)))*(x[i]-(1.9*letter_thickness+ (k+0.2)*letter_width)) + 0.5*letter_height + letter_thickness |
---|
262 | xmin = 1.9*letter_thickness |
---|
263 | xmax = letter_width |
---|
264 | if ymin < y[i] < ymax and xmin + (k+0.2)*letter_width< x[i] < xmax+ (k+0.2)*letter_width: |
---|
265 | z[i] += depth |
---|
266 | for i in range(N): |
---|
267 | ymin = (-(0.5*letter_height)/((letter_width)))*(x[i]-(1.9*letter_thickness+ (k+0.2)*letter_width)) + 0.5*letter_height - letter_thickness |
---|
268 | ymax = (-(0.5*letter_height)/((letter_width)))*(x[i]-(1.9*letter_thickness+ (k+0.2)*letter_width)) + 0.5*letter_height |
---|
269 | xmin = 1.9*letter_thickness |
---|
270 | xmax = letter_width |
---|
271 | if ymin < y[i] < ymax and xmin + (k+0.2)*letter_width< x[i] < xmax+ (k+0.2)*letter_width: |
---|
272 | z[i] += depth |
---|
273 | return z |
---|
274 | |
---|
275 | def L(x,y): |
---|
276 | z = 0*x |
---|
277 | N = len(x) |
---|
278 | for i in range(N): |
---|
279 | if 0 < y[i] < letter_height and 0.5*letter_thickness + (k)*letter_width < x[i] < 2*letter_thickness+ (k)*letter_width: |
---|
280 | z[i] += depth |
---|
281 | if 0 < y[i] < 0.01*letter_thickness*letter_height and 1.9*letter_thickness + (k)*letter_width < x[i] < 0.95*letter_width+ (k)*letter_width: |
---|
282 | z[i] += depth |
---|
283 | return z |
---|
284 | |
---|
285 | def M(x,y): |
---|
286 | z = 0*x |
---|
287 | N = len(x) |
---|
288 | for i in range(N): |
---|
289 | if 0 < y[i] < letter_height and 0.5*letter_thickness + (k)*letter_width < x[i] < 2*letter_thickness+ (k)*letter_width: |
---|
290 | z[i] += depth |
---|
291 | if 0 < y[i] < letter_height and (letter_width - 2*letter_thickness)+ (k)*letter_width < x[i] < (letter_width -0.5*letter_thickness) + (k)*letter_width: |
---|
292 | z[i] += depth |
---|
293 | for i in range(N): |
---|
294 | ymin = (-(0.7*letter_height)/((0.5*letter_width)))*(x[i]-(1.9*letter_thickness+ (k)*letter_width)) + letter_height - 2*letter_thickness |
---|
295 | ymax = (-(0.7*letter_height)/((0.5*letter_width)))*(x[i]-(1.9*letter_thickness+ (k)*letter_width)) + letter_height |
---|
296 | xmin = 1.9*letter_thickness |
---|
297 | xmax = 0.5*letter_width |
---|
298 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
299 | z[i] += depth |
---|
300 | for i in range(N): |
---|
301 | ymin = (0.7*(letter_height)/(0.5*(letter_width)))*(x[i]-(0.5*letter_width+ (k)*letter_width)) + (-(0.7*letter_height)/((0.5*letter_width)))*((0.5*letter_width)-(1.9*letter_thickness)) + letter_height - 2*letter_thickness |
---|
302 | ymax = (0.7*(letter_height)/(0.5*(letter_width)))*(x[i]-(0.5*letter_width+ (k)*letter_width)) + (-(0.7*letter_height)/((0.5*letter_width)))*((0.5*letter_width)-(1.9*letter_thickness)) + letter_height |
---|
303 | xmin = 0.5*letter_width |
---|
304 | xmax = letter_width - 1.9*letter_thickness |
---|
305 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax+ (k)*letter_width: |
---|
306 | z[i] += depth |
---|
307 | return z |
---|
308 | |
---|
309 | def N(x,y): |
---|
310 | z = 0*x |
---|
311 | p = len(x) |
---|
312 | for i in range(p): |
---|
313 | if 0 < y[i] < letter_height and 0.5*letter_thickness + (k)*letter_width< x[i] < 2*letter_thickness+ (k)*letter_width: |
---|
314 | z[i] += depth |
---|
315 | if 0 < y[i] < letter_height and (letter_width - 2*letter_thickness)+ (k)*letter_width < x[i] < (letter_width - 0.5*letter_thickness)+ (k)*letter_width: |
---|
316 | z[i] += depth |
---|
317 | for i in range(p): |
---|
318 | ymin = (-(letter_height)/((letter_width)-1.9*letter_thickness))*(x[i]-(1.9*letter_thickness+ (k)*letter_width)) + letter_height - 2*letter_thickness |
---|
319 | ymax = (-(letter_height)/((letter_width)-1.9*letter_thickness))*(x[i]-(1.9*letter_thickness+ (k)*letter_width)) + letter_height |
---|
320 | xmin = 1.9*letter_thickness |
---|
321 | xmax = letter_width - 1.9*letter_thickness |
---|
322 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
323 | z[i] += depth |
---|
324 | return z |
---|
325 | |
---|
326 | def O(x,y): |
---|
327 | z = 0*x |
---|
328 | N = len(x) |
---|
329 | for i in range(N): |
---|
330 | if (x[i]-(letter_width/2+ (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*(letter_height/2))**2 and 0+ (k)*letter_width < x[i] < letter_width+ (k)*letter_width: |
---|
331 | z[i] += depth |
---|
332 | if (x[i]-(letter_width/2+ (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*((letter_height/2)-letter_thickness))**2 and 0+ (k)*letter_width < x[i] < letter_width+ (k)*letter_width: |
---|
333 | z[i] += -1*depth |
---|
334 | return z |
---|
335 | |
---|
336 | def P(x,y): |
---|
337 | z = 0*x |
---|
338 | N = len(x) |
---|
339 | for i in range(N): |
---|
340 | ymin = 0 |
---|
341 | ymax = letter_height |
---|
342 | xmin = 0.5*letter_thickness |
---|
343 | xmax = 2*letter_thickness |
---|
344 | if ymin < y[i] < ymax and xmin + (k+0.2)*letter_width< x[i] < xmax+ (k+0.2)*letter_width: |
---|
345 | z[i] += depth |
---|
346 | for i in range(N): |
---|
347 | if (x[i]-((letter_width/2)-10+ (k+0.2)*letter_width))**2+(y[i]-(0.75*letter_height))**2<((letter_height/4))**2 and letter_thickness + (k+0.2)*letter_width< x[i]: |
---|
348 | z[i] += depth |
---|
349 | if (x[i]-((letter_width/2)-10+ (k+0.2)*letter_width))**2+(y[i]-(0.75*letter_height))**2<(((letter_height/4)-letter_thickness))**2 and letter_thickness + (k+0.2)*letter_width< x[i]: |
---|
350 | z[i] += -1*depth |
---|
351 | for i in range(N): |
---|
352 | ymin = (letter_height/2)-5 |
---|
353 | ymax = (letter_height/2)+5 |
---|
354 | xmin = 0 |
---|
355 | xmax = 0.3*letter_width |
---|
356 | if ymin < y[i] < ymax and xmin + (k+0.2)*letter_width< x[i] < xmax+ (k+0.2)*letter_width: |
---|
357 | z[i] += depth |
---|
358 | return z |
---|
359 | |
---|
360 | def Q(x,y): |
---|
361 | z = 0*x |
---|
362 | N = len(x) |
---|
363 | for i in range(N): |
---|
364 | if (x[i]-(letter_width/2+ (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*(letter_height/2))**2 and 0 + (k)*letter_width< x[i] < letter_width+ (k)*letter_width: |
---|
365 | z[i] += depth |
---|
366 | if (x[i]-(letter_width/2+ (k)*letter_width))**2+(y[i]-(letter_height/2))**2<(0.9*((letter_height/2)-letter_thickness))**2 and 0 + (k)*letter_width< x[i] < letter_width+ (k)*letter_width: |
---|
367 | z[i] += -1*depth |
---|
368 | for i in range(N): |
---|
369 | ymin = (-(letter_height)/((letter_width)-1.9*letter_thickness))*(x[i]-(1.9*letter_thickness+ (k)*letter_width)) + letter_height - 2*letter_thickness |
---|
370 | ymax = (-(letter_height)/((letter_width)-1.9*letter_thickness))*(x[i]-(1.9*letter_thickness+ (k)*letter_width)) + letter_height |
---|
371 | xmin = 0.55*letter_width |
---|
372 | xmax = 0.95*letter_width |
---|
373 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax + (k)*letter_width: |
---|
374 | z[i] += depth |
---|
375 | return z |
---|
376 | |
---|
377 | def R(x,y): |
---|
378 | z = 0*x |
---|
379 | N = len(x) |
---|
380 | for i in range(N): |
---|
381 | ymin = 0 |
---|
382 | ymax = letter_height |
---|
383 | xmin = 0.5*letter_thickness |
---|
384 | xmax = 2*letter_thickness |
---|
385 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax+ (k)*letter_width: |
---|
386 | z[i] += depth |
---|
387 | for i in range(N): |
---|
388 | if (x[i]-((letter_width/2)-10+ (k)*letter_width))**2+(y[i]-(0.75*letter_height))**2<((letter_height/4))**2 and letter_thickness + (k)*letter_width< x[i]: |
---|
389 | z[i] += depth |
---|
390 | if (x[i]-((letter_width/2)-10+ (k)*letter_width))**2+(y[i]-(0.75*letter_height))**2<(((letter_height/4)-letter_thickness))**2 and letter_thickness + (k)*letter_width < x[i]: |
---|
391 | z[i] += -1*depth |
---|
392 | for i in range(N): |
---|
393 | ymin = (letter_height/2)-5 |
---|
394 | ymax = (letter_height/2)+5 |
---|
395 | xmin = 0.5*letter_thickness |
---|
396 | xmax = 0.3*letter_width |
---|
397 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax+ (k)*letter_width: |
---|
398 | z[i] += depth |
---|
399 | for i in range(N): |
---|
400 | ymin = (-(letter_height)/((letter_width)))*(x[i]-(1*letter_thickness+ (k)*letter_width)) + letter_height - 2*letter_thickness |
---|
401 | ymax = (-(letter_height)/((letter_width)))*(x[i]-(1*letter_thickness+ (k)*letter_width)) + letter_height |
---|
402 | xmin = 0.5*letter_width |
---|
403 | xmax = 0.95*letter_width |
---|
404 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax + (k)*letter_width: |
---|
405 | z[i] += depth |
---|
406 | return z |
---|
407 | |
---|
408 | def S(x,y): |
---|
409 | z = 0*x |
---|
410 | N = len(x) |
---|
411 | for i in range(N): |
---|
412 | if 0.3*letter_width*sin((2*pi*y[i]/(0.7*letter_height))-0.1*letter_height) +0.5*letter_width+ (k)*letter_width< x[i] < 0.3*letter_width*sin((2*pi*y[i]/(0.7*letter_height))-0.1*letter_height)+(0.5*letter_width+2*letter_thickness)+ (k)*letter_width: |
---|
413 | z[i] += depth |
---|
414 | return z |
---|
415 | |
---|
416 | def T(x,y): |
---|
417 | z = 0*x |
---|
418 | N = len(x) |
---|
419 | for i in range(N): |
---|
420 | if 0 < y[i] < letter_height and (0.5-0.005*letter_thickness)*letter_width + (k)*letter_width < x[i] < (0.5+0.005*letter_thickness)*letter_width + (k)*letter_width: |
---|
421 | z[i] += depth |
---|
422 | if letter_height - letter_thickness < y[i] < letter_height and 0.08*letter_width + (k)*letter_width < x[i] < 0.95*letter_width + (k)*letter_width: |
---|
423 | z[i] += depth |
---|
424 | return z |
---|
425 | |
---|
426 | def U(x,y): |
---|
427 | z = 0*x |
---|
428 | N = len(x) |
---|
429 | for i in range(N): |
---|
430 | if y[i]< -(((0.9*(letter_height/2))**2 - (x[i]- (0.5*letter_width+ (k)*letter_width))**2)**0.5)+ 0.6*letter_height and 0<y[i]<0.3*letter_height: |
---|
431 | z[i] += depth |
---|
432 | if y[i]< -(((0.9*(letter_height/2))**2 - (x[i]- (0.5*letter_width+ (k)*letter_width))**2)**0.5)+ 0.5*letter_height and 0<y[i]<0.3*letter_height: |
---|
433 | z[i] += -depth |
---|
434 | if 0.2*letter_height < y[i] < letter_height and (0.83-0.01*letter_thickness)*letter_width + (k)*letter_width< x[i] < (0.83+0.01*letter_thickness)*letter_width+ (k)*letter_width: |
---|
435 | z[i] += depth |
---|
436 | if 0.2*letter_height < y[i] < letter_height and (0.18-0.01*letter_thickness)*letter_width + (k)*letter_width< x[i] < (0.18+0.01*letter_thickness)*letter_width+ (k)*letter_width: |
---|
437 | z[i] += depth |
---|
438 | return z |
---|
439 | |
---|
440 | def V(x,y): |
---|
441 | z = 0*x |
---|
442 | N = len(x) |
---|
443 | for i in range(N): |
---|
444 | ymin = (-(letter_height)/((0.5*letter_width)))*(x[i]- (k)*letter_width) + (letter_height) |
---|
445 | ymax = (-(letter_height)/((0.5*letter_width)))*(x[i]- (k)*letter_width) + (letter_height + 2*letter_thickness) |
---|
446 | xmin = 0 |
---|
447 | xmax = 0.5*letter_width |
---|
448 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
449 | z[i] += depth |
---|
450 | for i in range(N): |
---|
451 | ymin = ((letter_height)/((0.5*letter_width)))*(x[i]-(0.5*letter_width+ (k)*letter_width)) |
---|
452 | ymax = ((letter_height)/((0.5*letter_width)))*(x[i]-(0.5*letter_width+ (k)*letter_width))+ 2*letter_thickness |
---|
453 | xmin = 0.5*letter_width |
---|
454 | xmax = letter_width |
---|
455 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
456 | z[i] += depth |
---|
457 | return z |
---|
458 | |
---|
459 | def W(x,y): |
---|
460 | z = 0*x |
---|
461 | N = len(x) |
---|
462 | for i in range(N): |
---|
463 | ymin = (-(letter_height)/((0.25*letter_width)))*(x[i]- (k)*letter_width) + (letter_height-letter_thickness) |
---|
464 | ymax = (-(letter_height)/((0.25*letter_width)))*(x[i]- (k)*letter_width) + (letter_height + 2*letter_thickness) |
---|
465 | xmin = 0 |
---|
466 | xmax = 0.25*letter_width |
---|
467 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
468 | z[i] += depth |
---|
469 | for i in range(N): |
---|
470 | ymin = ((0.5*letter_height)/((0.25*letter_width)))*(x[i]-(0.25*letter_width+ (k)*letter_width)) |
---|
471 | ymax = ((0.5*letter_height)/((0.25*letter_width)))*(x[i]-(0.25*letter_width+ (k)*letter_width))+ 2*letter_thickness |
---|
472 | xmin = 0.25*letter_width |
---|
473 | xmax = 0.5*letter_width |
---|
474 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
475 | z[i] += depth |
---|
476 | for i in range(N): |
---|
477 | ymin = (-(0.5*letter_height)/((0.25*letter_width)))*(x[i]-(0.5*letter_width+ (k)*letter_width)) + (0.5*letter_height) |
---|
478 | ymax = (-(0.5*letter_height)/((0.25*letter_width)))*(x[i]-(0.5*letter_width+ (k)*letter_width)) + (0.5*letter_height + 2*letter_thickness) |
---|
479 | xmin = 0.5*letter_width |
---|
480 | xmax = 0.75*letter_width |
---|
481 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
482 | z[i] += depth |
---|
483 | for i in range(N): |
---|
484 | ymin = ((letter_height)/((0.25*letter_width)))*(x[i]-(0.75*letter_width+ (k)*letter_width)) -letter_thickness |
---|
485 | ymax = ((letter_height)/((0.25*letter_width)))*(x[i]-(0.75*letter_width+ (k)*letter_width))+ 2*letter_thickness |
---|
486 | xmin = 0.75*letter_width |
---|
487 | xmax = letter_width |
---|
488 | if ymin < y[i] < ymax and xmin + (k)*letter_width< x[i] < xmax+ (k)*letter_width: |
---|
489 | z[i] += depth |
---|
490 | return z |
---|
491 | |
---|
492 | def X(x,y): |
---|
493 | z = 0*x |
---|
494 | N = len(x) |
---|
495 | for i in range(N): |
---|
496 | ymin = (-(letter_height)/((letter_width)))*(x[i]- (k+0.2)*letter_width) + (letter_height-letter_thickness) |
---|
497 | ymax = (-(letter_height)/((letter_width)))*(x[i]- (k+0.2)*letter_width) + (letter_height + letter_thickness) |
---|
498 | xmin = 0 |
---|
499 | xmax = letter_width |
---|
500 | if ymin < y[i] < ymax and xmin + (k+0.2)*letter_width< x[i] < xmax+ (k+0.2)*letter_width: |
---|
501 | z[i] += depth |
---|
502 | for i in range(N): |
---|
503 | ymin = ((letter_height)/((letter_width)))*(x[i]- (k+0.2)*letter_width) -letter_thickness |
---|
504 | ymax = ((letter_height)/((letter_width)))*(x[i]- (k+0.2)*letter_width)+ letter_thickness |
---|
505 | xmin = 0 |
---|
506 | xmax = letter_width |
---|
507 | if ymin < y[i] < ymax and xmin + (k+0.2)*letter_width< x[i] < xmax+ (k+0.2)*letter_width: |
---|
508 | z[i] += depth |
---|
509 | return z |
---|
510 | |
---|
511 | def Y(x,y): |
---|
512 | z = 0*x |
---|
513 | N = len(x) |
---|
514 | for i in range(N): |
---|
515 | if 0 < y[i] < 0.5*letter_height and (0.5-0.005*letter_thickness)*letter_width + (k)*letter_width < x[i] < (0.5+0.005*letter_thickness)*letter_width + (k)*letter_width: |
---|
516 | z[i] += depth |
---|
517 | for i in range(N): |
---|
518 | ymin = (-(letter_height)/((letter_width)))*(x[i]- (k)*letter_width) + (letter_height-0.6*letter_thickness) |
---|
519 | ymax = (-(letter_height)/((letter_width)))*(x[i]- (k)*letter_width) + (letter_height + 0.6*letter_thickness) |
---|
520 | xmin = 0 |
---|
521 | xmax = 0.5*letter_width |
---|
522 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax + (k)*letter_width: |
---|
523 | z[i] += depth |
---|
524 | for i in range(N): |
---|
525 | ymin = ((letter_height)/((letter_width)))*(x[i]- (k)*letter_width) -0.6*letter_thickness |
---|
526 | ymax = ((letter_height)/((letter_width)))*(x[i]- (k)*letter_width)+ 0.6*letter_thickness |
---|
527 | xmin = 0.5*letter_width |
---|
528 | xmax = letter_width |
---|
529 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax + (k)*letter_width: |
---|
530 | z[i] += depth |
---|
531 | return z |
---|
532 | |
---|
533 | def Z(x,y): |
---|
534 | z = 0*x |
---|
535 | N = len(x) |
---|
536 | for i in range(N): |
---|
537 | ymin = ((letter_height)/((letter_width)))*(x[i]- (k)*letter_width) -0.6*letter_thickness |
---|
538 | ymax = ((letter_height)/((letter_width)))*(x[i]- (k)*letter_width)+ 0.6*letter_thickness |
---|
539 | xmin = 0 |
---|
540 | xmax = letter_width |
---|
541 | if ymin < y[i] < ymax and xmin + (k)*letter_width < x[i] < xmax + (k)*letter_width: |
---|
542 | z[i] += depth |
---|
543 | if letter_height - letter_thickness < y[i] < letter_height and 0 + (k)*letter_width < x[i] < letter_width + (k)*letter_width: |
---|
544 | z[i] += depth |
---|
545 | if 0 < y[i] < letter_thickness and 0 + (k)*letter_width < x[i] < letter_width + (k)*letter_width: |
---|
546 | z[i] += depth |
---|
547 | return z |
---|
548 | |
---|
549 | def space(x,y): |
---|
550 | z=0*x |
---|
551 | return z |
---|
552 | |
---|
553 | def translation(x,y): #shifts each letter along one place so they are not plotted on top of each other |
---|
554 | x = x + (i-1)*letter_width |
---|
555 | return x |
---|
556 | y = y |
---|
557 | return y |
---|
558 | z = 50*sin(x) |
---|
559 | |
---|
560 | current_letter_function = eval(current_letter) #function of vectors x and y whose output forms the shape of a letter |
---|
561 | domain.add_quantity('elevation', current_letter_function) #which is input here to be used as elevation. |
---|
562 | |
---|
563 | ############################################################################################################################################### |
---|
564 | |
---|
565 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
566 | domain.set_quantity('stage', expression='elevation') # Dry initial condition |
---|
567 | domain.add_quantity('stage', -1000) |
---|
568 | |
---|
569 | |
---|
570 | #thunderstorm = Rainfall(domain,rate=100,center=(50,50),radius=5) #remove comments to add rainfall input to a specified position on the grid |
---|
571 | #domain.forcing_terms.append(thunderstorm) |
---|
572 | |
---|
573 | |
---|
574 | #------------------------------------------------------------------------------ |
---|
575 | # Setup boundary conditions |
---|
576 | #------------------------------------------------------------------------------ |
---|
577 | Bi = Dirichlet_boundary([inflow_amount, 0, 0]) # Inflow |
---|
578 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
579 | Bo = Dirichlet_boundary([outflow_amount, 0, 0]) # Outflow |
---|
580 | |
---|
581 | def wave(t): |
---|
582 | |
---|
583 | A = amplitude # Amplitude [m] (Wave height) |
---|
584 | T = period # Wave period [s] |
---|
585 | |
---|
586 | if t < 3000: |
---|
587 | return [A*sin(2*pi*t/T) + 1, 0, 0] |
---|
588 | else: |
---|
589 | return [0.0, 0, 0] |
---|
590 | |
---|
591 | Bt = Time_boundary(domain, f=wave) |
---|
592 | |
---|
593 | left_b = eval(left_boundary) |
---|
594 | right_b = eval(right_boundary) |
---|
595 | top_b = eval(top_boundary) |
---|
596 | bottom_b = eval(bottom_boundary) |
---|
597 | |
---|
598 | domain.set_boundary({'left': left_b, 'right': right_b, 'top': top_b, 'bottom': bottom_b}) |
---|
599 | |
---|
600 | #------------------------------------------------------------------------------ |
---|
601 | # Evolve system through time |
---|
602 | #------------------------------------------------------------------------------ |
---|
603 | t0 = time.time() |
---|
604 | for t in domain.evolve(yieldstep=simulation_speed, finaltime=simulation_length): |
---|
605 | print domain.timestepping_statistics() |
---|
606 | print 'Computation took %.2f seconds' % (time.time()-t0) |
---|
607 | |
---|