[5427] | 1 | """ |
---|
| 2 | |
---|
| 3 | Ole Check Culvert Routine from Line 258 |
---|
| 4 | |
---|
| 5 | Although it is Setup as a Culvert with the Opening presented vertically, |
---|
| 6 | for now the calculation of flow rate is assuming a horizontal hole in the |
---|
| 7 | ground (Fix this Later) |
---|
| 8 | |
---|
| 9 | MOST importantly 2 things... |
---|
| 10 | 1. How to use the Create Polygon Routine to enquire Depth ( or later energy) |
---|
| 11 | infront of the Culvert |
---|
| 12 | |
---|
| 13 | Done (Ole) |
---|
| 14 | |
---|
| 15 | 2. How to apply the Culvert velocity and thereby Momentum to the Outlet |
---|
| 16 | Ject presented at the Outlet |
---|
| 17 | |
---|
| 18 | |
---|
| 19 | |
---|
| 20 | Testing CULVERT (Changing from Horizontal Abstraction to Vertical Abstraction |
---|
| 21 | |
---|
| 22 | This Version CALCULATES the Culvert Velocity and Uses it to establish |
---|
| 23 | The Culvert Outlet Momentum |
---|
| 24 | |
---|
| 25 | The Aim is to define a Flow Transfer function that Simulates a Culvert |
---|
| 26 | by using the Total Available Energy to Drive the Culvert |
---|
| 27 | as Derived by determining the Difference in Total Energy |
---|
| 28 | between 2 Points, Just Up stream and Just Down Stream of the Culvert |
---|
| 29 | away from the influence of the Flow Abstraction etc.. |
---|
| 30 | |
---|
| 31 | This example includes a Model Topography that shows a |
---|
| 32 | TYPICAL Headwall Configuration |
---|
| 33 | |
---|
| 34 | The aim is to change the Culvert Routine to Model more precisely the |
---|
| 35 | abstraction |
---|
| 36 | from a vertical face. |
---|
| 37 | |
---|
| 38 | The inflow must include the impact of Approach velocity. |
---|
| 39 | Similarly the Outflow has MOMENTUM Not just Up welling as in the |
---|
| 40 | Horizontal Style |
---|
| 41 | abstraction |
---|
| 42 | |
---|
| 43 | """ |
---|
| 44 | |
---|
| 45 | #------------------------------------------------------------------------------ |
---|
| 46 | # Import necessary modules |
---|
| 47 | #------------------------------------------------------------------------------ |
---|
| 48 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
| 49 | from anuga.shallow_water import Domain |
---|
| 50 | from anuga.shallow_water.shallow_water_domain import Reflective_boundary |
---|
| 51 | from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary |
---|
| 52 | from anuga.shallow_water.shallow_water_domain import Inflow, General_forcing |
---|
[5436] | 53 | |
---|
| 54 | from anuga.culvert_flows.culvert_class import Culvert_flow |
---|
| 55 | from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model |
---|
| 56 | |
---|
| 57 | |
---|
[5427] | 58 | from anuga.utilities.polygon import plot_polygons |
---|
| 59 | |
---|
[5429] | 60 | |
---|
[5427] | 61 | from math import pi,sqrt |
---|
| 62 | |
---|
| 63 | #------------------------------------------------------------------------------ |
---|
| 64 | # Setup computational domain |
---|
| 65 | #------------------------------------------------------------------------------ |
---|
| 66 | |
---|
| 67 | length = 40. |
---|
| 68 | width = 5. |
---|
| 69 | |
---|
| 70 | #dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
| 71 | #dx = dy = .5 # Resolution: Length of subdivisions on both axes |
---|
| 72 | dx = dy = .25 # Resolution: Length of subdivisions on both axes |
---|
| 73 | #dx = dy = .1 # Resolution: Length of subdivisions on both axes |
---|
| 74 | |
---|
| 75 | # OLE.... How do I refine the resolution... in the area where I have the Culvert Opening ???...... |
---|
| 76 | # Can I refine in a X & Y Range ??? |
---|
| 77 | points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), |
---|
| 78 | len1=length, len2=width) |
---|
| 79 | domain = Domain(points, vertices, boundary) |
---|
| 80 | domain.set_name('culv_dev_HW_Var_Mom') # Output name |
---|
| 81 | domain.set_default_order(2) |
---|
| 82 | domain.H0 = 0.01 |
---|
| 83 | domain.tight_slope_limiters = True |
---|
[5428] | 84 | domain.set_minimum_storable_height(0.001) |
---|
[5427] | 85 | |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | |
---|
[5428] | 89 | |
---|
[5427] | 90 | #------------------------------------------------------------------------------ |
---|
| 91 | # Setup initial conditions |
---|
| 92 | #------------------------------------------------------------------------------ |
---|
| 93 | |
---|
| 94 | # Define the topography (land scape) |
---|
| 95 | def topography(x, y): |
---|
| 96 | """Set up a weir |
---|
| 97 | |
---|
| 98 | A culvert will connect either side of an Embankment with a Headwall type structure |
---|
| 99 | The aim is for the Model to REALISTICALY model flow through the Culvert |
---|
| 100 | """ |
---|
| 101 | # General Slope of Topography |
---|
| 102 | z=-x/100 |
---|
| 103 | floorhgt = 5 |
---|
| 104 | embank_hgt=10 |
---|
| 105 | embank_upslope=embank_hgt/5 |
---|
| 106 | embank_dnslope=embank_hgt/2.5 |
---|
| 107 | # Add bits and Pieces to topography |
---|
| 108 | N = len(x) |
---|
| 109 | for i in range(N): |
---|
| 110 | |
---|
| 111 | # Sloping Embankment Across Channel |
---|
| 112 | |
---|
| 113 | if 0.0 < x[i] < 7.51: |
---|
| 114 | z[i]=z[i]+5.0 |
---|
| 115 | if 7.5 < x[i] < 10.1: |
---|
| 116 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: # Cut Out Segment for Culvert FACE |
---|
| 117 | z[i]=z[i]+5.0 |
---|
| 118 | else: |
---|
| 119 | z[i] += embank_upslope*(x[i] -5.0) # Sloping Segment U/S Face |
---|
| 120 | if 10.0 < x[i] < 12.1: |
---|
| 121 | if 2.0 < y[i] < 3.0: # Cut Out Segment for Culvert (open Channel) |
---|
| 122 | #z[i] += z[i]+5-(x[i]-10)*2 # Sloping Channel in Embankment |
---|
| 123 | z[i] += embank_hgt # Flat Crest of Embankment |
---|
| 124 | else: |
---|
| 125 | z[i] += embank_hgt # Flat Crest of Embankment |
---|
| 126 | if 12.0 < x[i] < 14.5: |
---|
| 127 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: # Cut Out Segment for Culvert FACE |
---|
| 128 | z[i]=z[i] |
---|
| 129 | else: |
---|
| 130 | z[i] += embank_hgt-embank_dnslope*(x[i] -12.0) # Sloping D/S Face |
---|
| 131 | |
---|
| 132 | return z |
---|
| 133 | |
---|
| 134 | |
---|
| 135 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
| 136 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
| 137 | domain.set_quantity('stage', |
---|
| 138 | expression='elevation') # Dry initial condition |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | #------------------------------------------------------------------------------ |
---|
| 143 | # Setup culvert inlets and outlets in current topography |
---|
| 144 | #------------------------------------------------------------------------------ |
---|
| 145 | |
---|
| 146 | # Define culvert inlet and outlets |
---|
| 147 | # NEED TO ADD Mannings N as Fixed Value or Function |
---|
| 148 | # Energy Loss Coefficients as Fixed or Function |
---|
| 149 | # Also Set the Shape & Gap Factors fo rthe Enquiry PolyGons |
---|
| 150 | # ALSO Allow the Invert Level to be provided by the USER |
---|
[5436] | 151 | |
---|
| 152 | |
---|
| 153 | culvert1 = Culvert_flow(domain, |
---|
[5427] | 154 | label='Culvert No. 1', |
---|
[5436] | 155 | description='This culvert is a test unit 1.2m Wide by 0.75m High', |
---|
[5427] | 156 | end_point0=[9.0, 2.5], |
---|
| 157 | end_point1=[13.0, 2.5], |
---|
[5429] | 158 | width=1.20,height=0.75, |
---|
| 159 | culvert_routine=boyd_generalised_culvert_model, |
---|
[5585] | 160 | number_of_barrels=2, |
---|
[5427] | 161 | verbose=True) |
---|
[5436] | 162 | |
---|
| 163 | culvert2 = Culvert_flow(domain, |
---|
| 164 | label='Culvert No. 2', |
---|
| 165 | description='This culvert is a circular test with d=1.2m', |
---|
| 166 | end_point0=[9.0, 1.5], |
---|
| 167 | end_point1=[30.0, 3.5], |
---|
| 168 | diameter=1.20, |
---|
| 169 | invert_level0=7, |
---|
| 170 | culvert_routine=boyd_generalised_culvert_model, |
---|
| 171 | verbose=True) |
---|
[5427] | 172 | |
---|
[5436] | 173 | domain.forcing_terms.append(culvert1) |
---|
| 174 | domain.forcing_terms.append(culvert2) |
---|
[5427] | 175 | |
---|
| 176 | |
---|
| 177 | #------------------------------------------------------------------------------ |
---|
| 178 | # Setup boundary conditions |
---|
| 179 | #------------------------------------------------------------------------------ |
---|
| 180 | #Bi = Dirichlet_boundary([0.5, 0.0, 0.0]) # Inflow based on Flow Depth (0.5m) and Approaching Momentum !!! |
---|
| 181 | Bi = Dirichlet_boundary([0.0, 0.0, 0.0]) # Inflow based on Flow Depth and Approaching Momentum !!! |
---|
| 182 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
| 183 | Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow |
---|
| 184 | |
---|
| 185 | domain.set_boundary({'left': Br, 'right': Bo, 'top': Br, 'bottom': Br}) |
---|
| 186 | |
---|
| 187 | #------------------------------------------------------------------------------ |
---|
| 188 | # Setup Application of specialised forcing terms |
---|
| 189 | #------------------------------------------------------------------------------ |
---|
| 190 | |
---|
| 191 | # This is the new element implemented by Ole to allow direct input of Inflow in m^3/s |
---|
| 192 | fixed_flow = Inflow(domain, |
---|
| 193 | rate=20.00, |
---|
| 194 | center=(2.1, 2.1), |
---|
| 195 | radius=1.261566) # Fixed Flow Value Over Area of 5m2 at 1m/s = 5m^3/s |
---|
| 196 | |
---|
| 197 | # flow=file_function('Q/QPMF_Rot_Sub13.tms')) # Read Time Series in from File |
---|
| 198 | # flow=lambda t: min(0.01*t, 0.01942)) # Time Varying Function Tap turning up |
---|
| 199 | |
---|
| 200 | domain.forcing_terms.append(fixed_flow) |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | #------------------------------------------------------------------------------ |
---|
| 204 | # Evolve system through time |
---|
| 205 | #------------------------------------------------------------------------------ |
---|
| 206 | |
---|
| 207 | |
---|
| 208 | for t in domain.evolve(yieldstep = 0.1, finaltime = 20): |
---|
| 209 | pass |
---|
| 210 | #if int(domain.time*100) % 100 == 0: |
---|
| 211 | # domain.write_time() |
---|
| 212 | |
---|
| 213 | #if domain.get_time() >= 4 and tap.flow != 0.0: |
---|
| 214 | # print 'Turning tap off' |
---|
| 215 | # tap.flow = 0.0 |
---|
| 216 | |
---|
| 217 | #if domain.get_time() >= 3 and sink.flow < 0.0: |
---|
| 218 | # print 'Turning drain on' |
---|
| 219 | # sink.flow = -0.8 |
---|
| 220 | # Close |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | #------------------------------------------------------------------------------ |
---|
| 225 | # Query output |
---|
| 226 | #------------------------------------------------------------------------------ |
---|
| 227 | |
---|
| 228 | from anuga.shallow_water.data_manager import get_flow_through_cross_section |
---|
| 229 | |
---|
| 230 | swwfilename = domain.get_name()+'.sww' # Output name from script |
---|
| 231 | print swwfilename |
---|
| 232 | |
---|
| 233 | polyline = [[17., 0.], [17., 5.]] |
---|
| 234 | |
---|
| 235 | time, Q = get_flow_through_cross_section(swwfilename, polyline, verbose=True) |
---|
| 236 | |
---|
| 237 | from pylab import ion, plot |
---|
| 238 | ion() |
---|
| 239 | plot(time, Q) |
---|
| 240 | raw_input('done') |
---|