[3639] | 1 | """Example of the inundationmodel. |
---|
| 2 | |
---|
| 3 | A wave of water is washed up ontp a hypothetical beach. |
---|
| 4 | This one uses the parallel api |
---|
| 5 | |
---|
| 6 | To run: |
---|
| 7 | |
---|
| 8 | mpirun -c 4 python beach.py |
---|
| 9 | """ |
---|
| 10 | |
---|
| 11 | ###################### |
---|
| 12 | # Module imports |
---|
| 13 | |
---|
| 14 | from math import pi |
---|
| 15 | import time |
---|
| 16 | |
---|
| 17 | from anuga.shallow_water import Domain |
---|
| 18 | from anuga.shallow_water import Reflective_boundary |
---|
| 19 | from anuga.shallow_water import Dirichlet_boundary |
---|
| 20 | from anuga.shallow_water import Time_boundary |
---|
| 21 | from anuga.utilities.polygon import Polygon_function |
---|
| 22 | |
---|
| 23 | from Numeric import choose, greater, ones, sin, exp |
---|
| 24 | |
---|
| 25 | from anuga_parallel.parallel_api import myid, numprocs, distribute |
---|
| 26 | |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | #------------------ |
---|
| 30 | # Define geometries |
---|
| 31 | #------------------ |
---|
| 32 | |
---|
| 33 | def bathymetry(x,y): |
---|
| 34 | cut = 75 |
---|
| 35 | res = choose( greater(x, cut), ( -(x - 55)/5, -4*ones(x.shape) )) |
---|
| 36 | res == (100-y)/50 + 1 |
---|
| 37 | return res |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | def topography(x, y): |
---|
| 41 | z = -4.0*x/25 + 8 + (100-y)/50 # Beach |
---|
| 42 | z += 6*exp( -((x-30)/10)**2 ) * exp( -((y-50)/8)**2 ) # Mound |
---|
| 43 | z += 4*exp( -((x-30)/4)**2 ) * exp( -((y-26)/10)**2 ) # Extra ridge |
---|
| 44 | z += 4*exp( -((x-30)/5)**2 ) * exp( -((y-10)/8)**2 ) # Extra ridge |
---|
| 45 | z -= 4*exp( -((x-15)/6)**2 ) * exp( -((y-20)/12)**2 ) # Depression |
---|
| 46 | z += 1.2*exp( -((x-88)/7)**2 ) + exp( -((y-20)/25)**2 ) # Seafloor |
---|
| 47 | return z |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | def riverbed(x, y): |
---|
| 51 | return (y-100)/70 - 4.0*x/25 + 8 |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | # Polygons |
---|
| 55 | shoreline = [[40,0], [100,0], [100,100], [65,100], |
---|
| 56 | [55,90], [55,70], [56,50], [50,25], [40,0]] |
---|
| 57 | |
---|
| 58 | land = [[65,100], [55,90], [55,70], [56,50], [50,25], [40,0], |
---|
| 59 | [0,0], [0,100]] |
---|
| 60 | |
---|
| 61 | water = [[55,0], [100,0], [100,100], [55,100]] |
---|
| 62 | all = [[0,0], [0,100], [100,100], [100,0]] |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | building1 = [[45,80], [49,78], [52,83], [46,83]] |
---|
| 66 | building2 = [[35,75], [40,75], [40,80], [35,80]] |
---|
| 67 | building3 = [[42,63], [46,61], [48,65], [44,67]] |
---|
| 68 | building4 = [[28,56], [28,51], [33,51], [33,56]] |
---|
| 69 | building5 = [[10,70], [10,65], [15,65], [15,70]] |
---|
| 70 | building6 = [[10,50], [10,45], [15,45], [15,50]] |
---|
| 71 | |
---|
| 72 | river = [[20,100], [18,90], [20,80], [20,60], [15,40], [11,20], [2,0], [10,0], |
---|
| 73 | [14,10], [20,30], [24,45], [27,80], [27,85], [35,90], [39,100]] |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | #---------------------- |
---|
| 78 | # Domain |
---|
| 79 | #---------------------- |
---|
| 80 | name = 'beach' |
---|
| 81 | print 'Creating domain from %s.tsh' %name |
---|
| 82 | domain = Domain(mesh_filename = name + '.tsh', |
---|
| 83 | use_cache=True, verbose=True) |
---|
| 84 | domain.set_name(name) |
---|
| 85 | domain.set_default_order(2) |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | #---------------------- |
---|
| 89 | # Initial conditions |
---|
| 90 | #---------------------- |
---|
| 91 | domain.set_quantity('elevation', |
---|
| 92 | Polygon_function( [(all, topography), |
---|
| 93 | (building1, 7), (building2, 8), |
---|
| 94 | (building3, 7), (building4, 13), |
---|
| 95 | (building5, 10), (building6, 11)])) |
---|
| 96 | |
---|
| 97 | domain.set_quantity('stage', |
---|
| 98 | Polygon_function( [(water, -1.5), |
---|
| 99 | (land, -10)] )) |
---|
| 100 | |
---|
| 101 | domain.set_quantity('friction', 0.03) |
---|
| 102 | print domain.statistics() |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | #---------------------- |
---|
| 106 | # Boundary conditions |
---|
| 107 | #---------------------- |
---|
| 108 | Br = Reflective_boundary(domain) |
---|
[3656] | 109 | Bd = Dirichlet_boundary([-12, 0.0, 0.0]) |
---|
[3639] | 110 | #Bt = Time_boundary(domain, lambda t: [ 3.0*(1+sin(2*pi*t/100)), 0.0, 0.0]) |
---|
| 111 | |
---|
| 112 | tags = {} |
---|
| 113 | tags['wall'] = Br |
---|
| 114 | tags['wall1'] = Br |
---|
| 115 | tags['outflow'] = Bd |
---|
| 116 | tags['exterior'] = Br |
---|
| 117 | tags['external'] = Br |
---|
| 118 | tags['land'] = Bd |
---|
| 119 | tags['westbank'] = None #Riverbank |
---|
| 120 | tags['eastbank'] = None #Riverbank |
---|
| 121 | tags['eastbankN'] = None #Riverbank |
---|
| 122 | tags['ocean'] = None # Bind this one later |
---|
| 123 | |
---|
| 124 | domain.set_boundary(tags) |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | #-------------------- |
---|
| 128 | # Distribute domain |
---|
| 129 | #-------------------- |
---|
| 130 | domain = distribute(domain) |
---|
| 131 | |
---|
[3656] | 132 | Bt = Time_boundary(domain, lambda t: [ 4.0*(1+sin(2*pi*t/50)), -1.0, 0.0]) |
---|
[3829] | 133 | domain.set_boundary({'ocean': Bt}) |
---|
[3639] | 134 | |
---|
| 135 | #---------------------- |
---|
| 136 | # Evolve through time |
---|
| 137 | #---------------------- |
---|
| 138 | t0 = time.time() |
---|
| 139 | for t in domain.evolve(yieldstep = 0.2, finaltime = 300): |
---|
[3773] | 140 | #domain.write_time() |
---|
[3639] | 141 | |
---|
[3773] | 142 | w = domain.get_maximum_inundation_elevation() |
---|
| 143 | x, y = domain.get_maximum_inundation_location() |
---|
| 144 | t = domain.get_time() |
---|
| 145 | print ' Coastline elevation at t = %.2f is %.2f at loc (x,y)=(%.2f, %.2f)' %(t, w, x, y) |
---|
| 146 | |
---|
| 147 | |
---|
[3639] | 148 | print 'Simulation took %.2f seconds' %(time.time()-t0) |
---|
| 149 | |
---|