"""Example of the inundationmodel. A wave of water is washed up ontp a hypothetical beach. This one uses the parallel api To run: mpirun -c 4 python beach.py """ ###################### # Module imports from math import pi import time from anuga.shallow_water import Domain from anuga.shallow_water import Reflective_boundary from anuga.shallow_water import Dirichlet_boundary from anuga.shallow_water import Time_boundary from anuga.utilities.polygon import Polygon_function from Numeric import choose, greater, ones, sin, exp from anuga_parallel.parallel_api import myid, numprocs, distribute #------------------ # Define geometries #------------------ def bathymetry(x,y): cut = 75 res = choose( greater(x, cut), ( -(x - 55)/5, -4*ones(x.shape) )) res == (100-y)/50 + 1 return res def topography(x, y): z = -4.0*x/25 + 8 + (100-y)/50 # Beach z += 6*exp( -((x-30)/10)**2 ) * exp( -((y-50)/8)**2 ) # Mound z += 4*exp( -((x-30)/4)**2 ) * exp( -((y-26)/10)**2 ) # Extra ridge z += 4*exp( -((x-30)/5)**2 ) * exp( -((y-10)/8)**2 ) # Extra ridge z -= 4*exp( -((x-15)/6)**2 ) * exp( -((y-20)/12)**2 ) # Depression z += 1.2*exp( -((x-88)/7)**2 ) + exp( -((y-20)/25)**2 ) # Seafloor return z def riverbed(x, y): return (y-100)/70 - 4.0*x/25 + 8 # Polygons shoreline = [[40,0], [100,0], [100,100], [65,100], [55,90], [55,70], [56,50], [50,25], [40,0]] land = [[65,100], [55,90], [55,70], [56,50], [50,25], [40,0], [0,0], [0,100]] water = [[55,0], [100,0], [100,100], [55,100]] all = [[0,0], [0,100], [100,100], [100,0]] building1 = [[45,80], [49,78], [52,83], [46,83]] building2 = [[35,75], [40,75], [40,80], [35,80]] building3 = [[42,63], [46,61], [48,65], [44,67]] building4 = [[28,56], [28,51], [33,51], [33,56]] building5 = [[10,70], [10,65], [15,65], [15,70]] building6 = [[10,50], [10,45], [15,45], [15,50]] river = [[20,100], [18,90], [20,80], [20,60], [15,40], [11,20], [2,0], [10,0], [14,10], [20,30], [24,45], [27,80], [27,85], [35,90], [39,100]] #---------------------- # Domain #---------------------- name = 'beach' print 'Creating domain from %s.tsh' %name domain = Domain(mesh_filename = name + '.tsh', use_cache=True, verbose=True) domain.set_name(name) domain.set_default_order(2) #---------------------- # Initial conditions #---------------------- domain.set_quantity('elevation', Polygon_function( [(all, topography), (building1, 7), (building2, 8), (building3, 7), (building4, 13), (building5, 10), (building6, 11)])) domain.set_quantity('stage', Polygon_function( [(water, -1.5), (land, -10)] )) domain.set_quantity('friction', 0.03) print domain.statistics() #---------------------- # Boundary conditions #---------------------- Br = Reflective_boundary(domain) Bd = Dirichlet_boundary([-12, 0.0, 0.0]) #Bt = Time_boundary(domain, lambda t: [ 3.0*(1+sin(2*pi*t/100)), 0.0, 0.0]) tags = {} tags['wall'] = Br tags['wall1'] = Br tags['outflow'] = Bd tags['exterior'] = Br tags['external'] = Br tags['land'] = Bd tags['westbank'] = None #Riverbank tags['eastbank'] = None #Riverbank tags['eastbankN'] = None #Riverbank tags['ocean'] = None # Bind this one later domain.set_boundary(tags) #-------------------- # Distribute domain #-------------------- domain = distribute(domain) Bt = Time_boundary(domain, lambda t: [ 4.0*(1+sin(2*pi*t/50)), -1.0, 0.0]) domain.set_boundary({'ocean': Bt}) #---------------------- # Evolve through time #---------------------- t0 = time.time() for t in domain.evolve(yieldstep = 0.2, finaltime = 300): #domain.write_time() w = domain.get_maximum_inundation_elevation() x, y = domain.get_maximum_inundation_location() t = domain.get_time() print ' Coastline elevation at t = %.2f is %.2f at loc (x,y)=(%.2f, %.2f)' %(t, w, x, y) print 'Simulation took %.2f seconds' %(time.time()-t0)