"""Script for running a dam break simulation of UQ's dam break tank. Ole Nielsen and Duncan Gray, GA - 2006 Issues If running this is hand-set-up parallel, the python files are overwritten. """ #---------------------------------------------------------------------------- # Import necessary modules #---------------------------------------------------------------------------- # Standard modules import time from time import localtime, strftime import sys from shutil import copy from os import path, sep from os.path import dirname #, basename # Related major packages from anuga.shallow_water import Domain, Reflective_boundary, \ Dirichlet_boundary, Time_boundary, File_boundary from anuga.abstract_2d_finite_volumes.region import Set_region from anuga.fit_interpolate.interpolate import interpolate_sww2csv from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, \ copy_code_files # Scenario specific imports import project # Definition of file names and polygons import create_mesh def main(friction, outputdir_name=None, is_trial_run=False): basename = 'zz' + str(friction) if is_trial_run is True: outputdir_name += '_test' yieldstep = 1 finaltime = 31 else: yieldstep = 0.01 finaltime = 31 pro_instance = project.Project(['data','flumes','dam_2006'], outputdir_name=outputdir_name) mesh_filename = pro_instance.meshdir + basename + '.msh' #-------------------------------------------------------------------------- # Copy scripts to output directory and capture screen # output to file #-------------------------------------------------------------------------- # creates copy of code in output dir print "The output dir is", pro_instance.outputdir copy_code_files(pro_instance.outputdir,__file__, dirname(project.__file__) \ + sep + project.__name__+'.py') copy (pro_instance.codedir + 'run_dam.py', pro_instance.outputdir + 'run_dam' + str(friction)+ '.py') copy (pro_instance.codedir + 'create_mesh.py', pro_instance.outputdir + 'create_mesh.py') if is_trial_run is False: start_screen_catcher(pro_instance.outputdir, int(friction*100)) print 'USER: ', pro_instance.user #------------------------------------------------------------------------- # Create the triangular mesh #------------------------------------------------------------------------- gate_position = 0.85 create_mesh.generate(mesh_filename, gate_position, is_coarse=is_trial_run) # this creates the mesh head,tail = path.split(mesh_filename) copy (mesh_filename, pro_instance.outputdir + tail ) #------------------------------------------------------------------------- # Setup computational domain #------------------------------------------------------------------------- domain = Domain(mesh_filename, use_cache = False, verbose = True) print 'Number of triangles = ', len(domain) print 'The extent is ', domain.get_extent() print domain.statistics() domain.set_name(basename) domain.set_datadir(pro_instance.outputdir) domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) domain.set_minimum_storable_height(0.01) #domain.set_store_vertices_uniquely(True) # for writting to sww #------------------------------------------------------------------------- # Setup initial conditions #------------------------------------------------------------------------- slope = 0.05 def elevation_tilt(x, y): return x*slope domain.set_quantity('stage', elevation_tilt) domain.set_quantity('friction', friction) domain.set_quantity('elevation',elevation_tilt) print 'Available boundary tags', domain.get_boundary_tags() domain.set_region('dam','stage',0.20, location = 'unique vertices') #domain.set_region(Set_region('dam','stage',0.2, # location = 'unique vertices')) Br = Reflective_boundary(domain) Bd = Dirichlet_boundary([0,0,0]) # to drain the water out. domain.set_boundary( {'wall': Br, 'edge': Bd} ) #------------------------------------------------------------------------- # Evolve system through time #------------------------------------------------------------------------- t0 = time.time() for t in domain.evolve(yieldstep, finaltime): domain.write_time() print 'That took %.2f seconds' %(time.time()-t0) print 'finished' points = [[gate_position - 0.65,0.2], [gate_position - 0.55,0.2], [gate_position - 0.45,0.2], [gate_position - 0.35,0.2], [gate_position - 0.25,0.2] ] #------------------------------------------------------------------------- # Calculate gauge info #------------------------------------------------------------------------- interpolate_sww2csv(pro_instance.outputdir + basename +".sww", points, pro_instance.outputdir + "depth_manning_"+str(friction)+".csv", pro_instance.outputdir + "velocity_x.csv", pro_instance.outputdir + "velocity_y.csv") return pro_instance #------------------------------------------------------------- if __name__ == "__main__": for friction in [ 0.05]: main(friction, is_trial_run = True, outputdir_name='friction_set_A') # to do # .075, -0-1 # 0.0075 - 0-16 #.01, - 0-2 # #.0125, - 0-6 #0.015, - 0-17 #0.02, - 0-14 #$0.03]: - 0-7 # [0.016, - 0-11 #0.017, -0-8 #0.018, -0-9 #0.019]: - 0-12 # 0.005 - 0-20 # 0.02 - 4 # 0.016 - 8 # 0.017 - 9 # 0.018 - 1 # 0.019 -17 # calc - 7 # 0.0075 -12 # Let's fill some gaps # 0.0225 - 7 # 0.025 - 12 # 0.0275 - 6 #for friction in [0.0, .0025, .005, .0075, .01, .0125, 0.015, 0.02, 0.03]: #for friction in [0.016, 0.017, 0.018, 0.019]: # main(friction, is_trial_run = True, outputdir_name='friction_set')