[7777] | 1 | """ |
---|
| 2 | This module contains various auxiliary function used by pyvolution. |
---|
| 3 | """ |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | import numpy |
---|
| 7 | |
---|
| 8 | def mean(x): |
---|
| 9 | return numpy.sum(x)/len(x) |
---|
| 10 | |
---|
| 11 | |
---|
| 12 | def gradient(x0, x1, q0, q1): |
---|
| 13 | |
---|
| 14 | if q1-q0 != 0: |
---|
| 15 | a = (q1-q0)/(x1-x0) |
---|
| 16 | else: |
---|
| 17 | a = 0 |
---|
| 18 | |
---|
| 19 | return a |
---|
| 20 | |
---|
| 21 | def minmod(beta_p,beta_m): |
---|
| 22 | if (abs(beta_p) < abs(beta_m)) & (beta_p*beta_m > 0.0): |
---|
| 23 | phi = beta_p |
---|
| 24 | elif (abs(beta_m) < abs(beta_p)) & (beta_p*beta_m > 0.0): |
---|
| 25 | phi = beta_m |
---|
| 26 | else: |
---|
| 27 | phi = 0.0 |
---|
| 28 | return phi |
---|
| 29 | |
---|
| 30 | def minmod_kurganov(a,b,c): |
---|
| 31 | from numpy import sign |
---|
| 32 | if sign(a)==sign(b)==sign(c): |
---|
| 33 | return sign(a)*min(abs(a),abs(b),abs(c)) |
---|
| 34 | else: |
---|
| 35 | return 0.0 |
---|
| 36 | |
---|
| 37 | def maxmod(a,b): |
---|
| 38 | if (abs(a) > abs(b)) & (a*b > 0.0): |
---|
| 39 | phi = a |
---|
| 40 | elif (abs(b) > abs(a)) & (a*b > 0.0): |
---|
| 41 | phi = b |
---|
| 42 | else: |
---|
| 43 | phi = 0.0 |
---|
| 44 | return phi |
---|
| 45 | |
---|
| 46 | def vanleer(a,b): |
---|
| 47 | if abs(a)+abs(b) > 1e-12: |
---|
| 48 | return (a*abs(b)+abs(a)*b)/(abs(a)+abs(b)) |
---|
| 49 | else: |
---|
| 50 | return 0.0 |
---|
| 51 | |
---|
| 52 | def vanalbada(a,b): |
---|
| 53 | if a*a+b*b > 1e-12: |
---|
| 54 | return (a*a*b+a*b*b)/(a*a+b*b) |
---|
| 55 | else: |
---|
| 56 | return 0.0 |
---|
| 57 | |
---|
| 58 | def calculate_wetted_area(x1,x2,z1,z2,w1,w2): |
---|
| 59 | if (w1 > z1) & (w2 < z2) & (z1 <= z2): |
---|
| 60 | x = ((w2-z1)*(x2-x1)+x1*(z2-z1)-x2*(w2-w1))/(z2-z1+w1-w2) |
---|
| 61 | A = 0.5*(w1-z1)*(x-x1) |
---|
| 62 | L = x-x1 |
---|
| 63 | elif (w1 < z1) & (w2 > z2) & (z1 < z2): |
---|
| 64 | x = ((w2-z1)*(x2-x1)+x1*(z2-z1)-x2*(w2-w1))/(z2-z1+w1-w2) |
---|
| 65 | A = 0.5*(w2-z2)*(x2-x) |
---|
| 66 | L = x2-x |
---|
| 67 | elif (w1 < z1) & (w2 > z2) & (z1 >= z2): |
---|
| 68 | x = ((w1-z2)*(x2-x1)+x2*(z2-z1)-x1*(w2-w1))/(z2-z1+w1-w2) |
---|
| 69 | A = 0.5*(w2-z2)*(x2-x) |
---|
| 70 | L = x2-x |
---|
| 71 | elif (w1 > z1) & (w2 < z2) & (z1 > z2): |
---|
| 72 | x = ((w1-z2)*(x2-x1)+x2*(z2-z1)-x1*(w2-w1))/(z2-z1+w1-w2) |
---|
| 73 | A = 0.5*(w1-z1)*(x-x1) |
---|
| 74 | L = x-x1 |
---|
| 75 | elif (w1 <= z1) & (w2 <= z2): |
---|
| 76 | A = 0.0 |
---|
| 77 | elif (w1 == z1) & (w2 > z2) & (z2 < z1): |
---|
| 78 | A = 0.5*(x2-x1)*(w2-z2) |
---|
| 79 | elif (w2 == z2) & (w1 > z1) & (z1 < z2): |
---|
| 80 | A = 0.5*(x2-x1)*(w1-z1) |
---|
| 81 | return A |
---|
| 82 | |
---|
| 83 | |
---|
| 84 | def calculate_new_wet_area(x1,x2,z1,z2,A): |
---|
| 85 | from numpy import sqrt |
---|
| 86 | min_centroid_height = 1.0e-3 |
---|
| 87 | # Assumes reconstructed stage flat in a wetted cell |
---|
| 88 | M = (z2-z1)/(x2-x1) |
---|
| 89 | L = (x2-x1) |
---|
| 90 | min_area = min_centroid_height*L |
---|
| 91 | max_area = 0.5*(x2-x1)*abs(z2-z1) |
---|
| 92 | if A < max_area: |
---|
| 93 | if (z1 < z2): |
---|
| 94 | x = sqrt(2*A/M)+x1 |
---|
| 95 | wet_len = x-x1 |
---|
| 96 | wc = z1 + sqrt(M*2*A) |
---|
| 97 | elif (z2 < z1): |
---|
| 98 | x = -sqrt(-2*A/M)+x2 |
---|
| 99 | wet_len = x2-x |
---|
| 100 | wc = z2+sqrt(-M*2*A) |
---|
| 101 | else: |
---|
| 102 | wc = A/L+0.5*(z1+z2) |
---|
| 103 | wet_len = x2-x1 |
---|
| 104 | else: |
---|
| 105 | wc = 0.5*(z1+z2)+A/L |
---|
| 106 | wet_len = x2-x1 |
---|
| 107 | |
---|
| 108 | return wc,wet_len |
---|
| 109 | |
---|
| 110 | def calculate_new_wet_area_analytic(x1,x2,z1,z2,A,t): |
---|
| 111 | min_centroid_height = 1.0e-3 |
---|
| 112 | # Assumes reconstructed stage flat in a wetted cell |
---|
| 113 | M = (z2-z1)/(x2-x1) |
---|
| 114 | L = (x2-x1) |
---|
| 115 | min_area = min_centroid_height*L |
---|
| 116 | max_area = 0.5*(x2-x1)*abs(z2-z1) |
---|
| 117 | w1,uh1 = analytic_cannal(x1,t) |
---|
| 118 | w2,uh2 = analytic_cannal(x2,t) |
---|
| 119 | if (w1 > z1) & (w2 < z2) & (z1 <= z2): |
---|
| 120 | print "test1" |
---|
| 121 | x = ((w2-z1)*(x2-x1)+x1*(z2-z1)-x2*(w2-w1))/(z2-z1+w1-w2) |
---|
| 122 | wet_len = x-x1 |
---|
| 123 | elif (w1 < z1) & (w2 > z2) & (z1 < z2): |
---|
| 124 | print "test2" |
---|
| 125 | x = ((w2-z1)*(x2-x1)+x1*(z2-z1)-x2*(w2-w1))/(z2-z1+w1-w2) |
---|
| 126 | wet_len = x2-x |
---|
| 127 | elif (w1 < z1) & (w2 > z2) & (z1 >= z2): |
---|
| 128 | print "test3" |
---|
| 129 | x = ((w1-z2)*(x2-x1)+x2*(z2-z1)-x1*(w2-w1))/(z2-z1+w1-w2) |
---|
| 130 | wet_len = x2-x |
---|
| 131 | elif (w1 > z1) & (w2 < z2) & (z1 > z2): |
---|
| 132 | print "test4" |
---|
| 133 | x = ((w1-z2)*(x2-x1)+x2*(z2-z1)-x1*(w2-w1))/(z2-z1+w1-w2) |
---|
| 134 | wet_len = x-x1 |
---|
| 135 | elif (w1 >= z1) & (w2 >= z2): |
---|
| 136 | print "test5" |
---|
| 137 | wet_len = x2-x1 |
---|
| 138 | else: #(w1 <= z1) & (w2 <= z2) |
---|
| 139 | print "test5" |
---|
| 140 | if (w1 > z1) | (w2 > z2): |
---|
| 141 | print "ERROR" |
---|
| 142 | wet_len = x2-x1 |
---|
| 143 | return w1,w2,wet_len,uh1,uh2 |
---|
| 144 | |
---|
| 145 | def analytic_cannal(C,t): |
---|
| 146 | |
---|
| 147 | import math |
---|
| 148 | #N = len(C) |
---|
| 149 | #u = zeros(N,numpy.float) ## water velocity |
---|
| 150 | #h = zeros(N,numpy.float) ## water depth |
---|
| 151 | x = C |
---|
| 152 | g = 9.81 |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | ## Define Basin Bathymetry |
---|
| 156 | #z_b = zeros(N,numpy.float) ## elevation of basin |
---|
| 157 | #z = zeros(N,numpy.float) ## elevation of water surface |
---|
| 158 | z_infty = 10.0 ## max equilibrium water depth at lowest point. |
---|
| 159 | L_x = 2500.0 ## width of channel |
---|
| 160 | |
---|
| 161 | A0 = 0.5*L_x ## determines amplitudes of oscillations |
---|
| 162 | omega = math.sqrt(2*g*z_infty)/L_x ## angular frequency of osccilation |
---|
| 163 | |
---|
| 164 | x1 = A0*cos(omega*t)-L_x # left shoreline |
---|
| 165 | x2 = A0*cos(omega*t)+L_x # right shoreline |
---|
| 166 | if (x >=x1) & (x <= x2): |
---|
| 167 | z_b = z_infty*(x**2/L_x**2) ## or A0*cos(omega*t)\pmL_x |
---|
| 168 | u = -A0*omega*sin(omega*t) |
---|
| 169 | z = z_infty+2*A0*z_infty/L_x*cos(omega*t)*(x/L_x-0.5*A0/(L_x)*cos(omega*t)) |
---|
| 170 | else: |
---|
| 171 | z_b = z_infty*(x**2/L_x**2) |
---|
| 172 | u=0.0 |
---|
| 173 | z = z_b |
---|
| 174 | h = z-z_b |
---|
| 175 | return z,u*h |
---|