[3424] | 1 | """Class Domain - |
---|
[2705] | 2 | 1D interval domains for finite-volume computations of |
---|
| 3 | the shallow water wave equation. |
---|
| 4 | |
---|
| 5 | This module contains a specialisation of class Domain from module domain.py |
---|
| 6 | consisting of methods specific to the Shallow Water Wave Equation |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | U_t + E_x = S |
---|
| 10 | |
---|
| 11 | where |
---|
| 12 | |
---|
| 13 | U = [w, uh] |
---|
| 14 | E = [uh, u^2h + gh^2/2] |
---|
| 15 | S represents source terms forcing the system |
---|
| 16 | (e.g. gravity, friction, wind stress, ...) |
---|
| 17 | |
---|
[4032] | 18 | and _t, _x, _y denote the derivative with respect to t, x and y respectiely. |
---|
[2705] | 19 | |
---|
| 20 | The quantities are |
---|
| 21 | |
---|
| 22 | symbol variable name explanation |
---|
| 23 | x x horizontal distance from origin [m] |
---|
| 24 | z elevation elevation of bed on which flow is modelled [m] |
---|
| 25 | h height water height above z [m] |
---|
| 26 | w stage absolute water level, w = z+h [m] |
---|
| 27 | u speed in the x direction [m/s] |
---|
| 28 | uh xmomentum momentum in the x direction [m^2/s] |
---|
| 29 | |
---|
| 30 | eta mannings friction coefficient [to appear] |
---|
| 31 | nu wind stress coefficient [to appear] |
---|
| 32 | |
---|
| 33 | The conserved quantities are w, uh |
---|
| 34 | |
---|
| 35 | For details see e.g. |
---|
| 36 | Christopher Zoppou and Stephen Roberts, |
---|
| 37 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
| 38 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
| 39 | |
---|
| 40 | |
---|
| 41 | John Jakeman, Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
| 42 | Geoscience Australia, 2006 |
---|
| 43 | """ |
---|
| 44 | |
---|
[4032] | 45 | #from domain import * |
---|
| 46 | #from domain_order2 import * |
---|
| 47 | from domain_t2 import * |
---|
[2705] | 48 | Generic_Domain = Domain #Rename |
---|
| 49 | |
---|
| 50 | #Shallow water domain |
---|
| 51 | class Domain(Generic_Domain): |
---|
| 52 | |
---|
[2716] | 53 | def __init__(self, coordinates, boundary = None, tagged_elements = None, |
---|
| 54 | geo_reference = None): |
---|
[2705] | 55 | |
---|
| 56 | conserved_quantities = ['stage', 'xmomentum'] |
---|
| 57 | other_quantities = ['elevation', 'friction'] |
---|
| 58 | Generic_Domain.__init__(self, coordinates, boundary, |
---|
| 59 | conserved_quantities, other_quantities, |
---|
[2716] | 60 | tagged_elements, geo_reference) |
---|
[2705] | 61 | |
---|
| 62 | from config import minimum_allowed_height, g |
---|
| 63 | self.minimum_allowed_height = minimum_allowed_height |
---|
| 64 | self.g = g |
---|
| 65 | |
---|
| 66 | #forcing terms not included in 1d domain ?WHy? |
---|
[3425] | 67 | self.forcing_terms.append(gravity) |
---|
[3510] | 68 | #self.forcing_terms.append(manning_friction) |
---|
[2705] | 69 | #print "\nI have Removed forcing terms line 64 1dsw" |
---|
| 70 | |
---|
| 71 | #Realtime visualisation |
---|
| 72 | self.visualiser = None |
---|
| 73 | self.visualise = False |
---|
| 74 | self.visualise_color_stage = False |
---|
| 75 | self.visualise_stage_range = 1.0 |
---|
| 76 | self.visualise_timer = True |
---|
| 77 | self.visualise_range_z = None |
---|
| 78 | |
---|
| 79 | #Stored output |
---|
| 80 | self.store = True |
---|
| 81 | self.format = 'sww' |
---|
| 82 | self.smooth = True |
---|
| 83 | |
---|
[3370] | 84 | #Evolve parametrs |
---|
| 85 | self.cfl = 1.0 |
---|
| 86 | |
---|
[2705] | 87 | #Reduction operation for get_vertex_values |
---|
[4032] | 88 | from util import mean |
---|
[2705] | 89 | self.reduction = mean |
---|
| 90 | #self.reduction = min #Looks better near steep slopes |
---|
| 91 | |
---|
| 92 | self.quantities_to_be_stored = ['stage','xmomentum'] |
---|
| 93 | |
---|
[4032] | 94 | |
---|
[2705] | 95 | def set_quantities_to_be_stored(self, q): |
---|
| 96 | """Specify which quantities will be stored in the sww file. |
---|
| 97 | |
---|
| 98 | q must be either: |
---|
| 99 | - the name of a quantity |
---|
| 100 | - a list of quantity names |
---|
| 101 | - None |
---|
| 102 | |
---|
| 103 | In the two first cases, the named quantities will be stored at each |
---|
| 104 | yieldstep |
---|
| 105 | (This is in addition to the quantities elevation and friction) |
---|
| 106 | If q is None, storage will be switched off altogether. |
---|
| 107 | """ |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | if q is None: |
---|
| 111 | self.quantities_to_be_stored = [] |
---|
| 112 | self.store = False |
---|
| 113 | return |
---|
| 114 | |
---|
| 115 | if isinstance(q, basestring): |
---|
| 116 | q = [q] # Turn argument into a list |
---|
| 117 | |
---|
| 118 | #Check correcness |
---|
| 119 | for quantity_name in q: |
---|
| 120 | msg = 'Quantity %s is not a valid conserved quantity' %quantity_name |
---|
| 121 | assert quantity_name in self.conserved_quantities, msg |
---|
| 122 | |
---|
| 123 | self.quantities_to_be_stored = q |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | def initialise_visualiser(self,scale_z=1.0,rect=None): |
---|
| 127 | #Realtime visualisation |
---|
| 128 | if self.visualiser is None: |
---|
| 129 | from realtime_visualisation_new import Visualiser |
---|
| 130 | self.visualiser = Visualiser(self,scale_z,rect) |
---|
| 131 | self.visualiser.setup['elevation']=True |
---|
| 132 | self.visualiser.updating['stage']=True |
---|
| 133 | self.visualise = True |
---|
| 134 | if self.visualise_color_stage == True: |
---|
| 135 | self.visualiser.coloring['stage'] = True |
---|
| 136 | self.visualiser.qcolor['stage'] = (0.0, 0.0, 0.8) |
---|
| 137 | print 'initialise visualiser' |
---|
| 138 | print self.visualiser.setup |
---|
| 139 | print self.visualiser.updating |
---|
| 140 | |
---|
| 141 | def check_integrity(self): |
---|
| 142 | Generic_Domain.check_integrity(self) |
---|
| 143 | #Check that we are solving the shallow water wave equation |
---|
| 144 | |
---|
| 145 | msg = 'First conserved quantity must be "stage"' |
---|
| 146 | assert self.conserved_quantities[0] == 'stage', msg |
---|
| 147 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
| 148 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
| 149 | |
---|
| 150 | def extrapolate_second_order_sw(self): |
---|
| 151 | #Call correct module function |
---|
| 152 | #(either from this module or C-extension) |
---|
| 153 | extrapolate_second_order_sw(self) |
---|
| 154 | |
---|
| 155 | def compute_fluxes(self): |
---|
| 156 | #Call correct module function |
---|
| 157 | #(either from this module or C-extension) |
---|
| 158 | compute_fluxes(self) |
---|
| 159 | |
---|
[4032] | 160 | def compute_timestep(self): |
---|
| 161 | #Call correct module function |
---|
| 162 | compute_timestep(self) |
---|
| 163 | |
---|
[2705] | 164 | def distribute_to_vertices_and_edges(self): |
---|
| 165 | #Call correct module function |
---|
| 166 | #(either from this module or C-extension) |
---|
| 167 | distribute_to_vertices_and_edges(self) |
---|
[4032] | 168 | |
---|
[2705] | 169 | def evolve(self, yieldstep = None, finaltime = None, |
---|
| 170 | skip_initial_step = False): |
---|
| 171 | """Specialisation of basic evolve method from parent class |
---|
| 172 | """ |
---|
| 173 | |
---|
| 174 | #Call check integrity here rather than from user scripts |
---|
| 175 | #self.check_integrity() |
---|
| 176 | |
---|
[3362] | 177 | #msg = 'Parameter beta_h must be in the interval [0, 1)' |
---|
| 178 | #assert 0 <= self.beta_h < 1.0, msg |
---|
| 179 | #msg = 'Parameter beta_w must be in the interval [0, 1)' |
---|
| 180 | #assert 0 <= self.beta_w < 1.0, msg |
---|
[2705] | 181 | |
---|
| 182 | |
---|
| 183 | #Initial update of vertex and edge values before any storage |
---|
| 184 | #and or visualisation |
---|
[4032] | 185 | |
---|
[2705] | 186 | self.distribute_to_vertices_and_edges() |
---|
[3335] | 187 | |
---|
[2705] | 188 | #Initialise real time viz if requested |
---|
[3293] | 189 | #if self.visualise is True and self.time == 0.0: |
---|
| 190 | # if self.visualiser is None: |
---|
| 191 | # self.initialise_visualiser() |
---|
| 192 | # |
---|
| 193 | # self.visualiser.update_timer() |
---|
| 194 | # self.visualiser.setup_all() |
---|
[2705] | 195 | |
---|
| 196 | #Store model data, e.g. for visualisation |
---|
[3293] | 197 | #if self.store is True and self.time == 0.0: |
---|
| 198 | # self.initialise_storage() |
---|
| 199 | # #print 'Storing results in ' + self.writer.filename |
---|
| 200 | #else: |
---|
| 201 | # pass |
---|
| 202 | # #print 'Results will not be stored.' |
---|
| 203 | # #print 'To store results set domain.store = True' |
---|
| 204 | # #FIXME: Diagnostic output should be controlled by |
---|
| 205 | # # a 'verbose' flag living in domain (or in a parent class) |
---|
[2705] | 206 | |
---|
| 207 | #Call basic machinery from parent class |
---|
| 208 | for t in Generic_Domain.evolve(self, yieldstep, finaltime, |
---|
| 209 | skip_initial_step): |
---|
| 210 | #Real time viz |
---|
[3293] | 211 | # if self.visualise is True: |
---|
| 212 | # self.visualiser.update_all() |
---|
| 213 | # self.visualiser.update_timer() |
---|
[2705] | 214 | |
---|
| 215 | |
---|
| 216 | #Store model data, e.g. for subsequent visualisation |
---|
[3293] | 217 | # if self.store is True: |
---|
| 218 | # self.store_timestep(self.quantities_to_be_stored) |
---|
[2705] | 219 | |
---|
| 220 | #FIXME: Could maybe be taken from specified list |
---|
| 221 | #of 'store every step' quantities |
---|
| 222 | |
---|
| 223 | #Pass control on to outer loop for more specific actions |
---|
| 224 | yield(t) |
---|
| 225 | |
---|
| 226 | def initialise_storage(self): |
---|
| 227 | """Create and initialise self.writer object for storing data. |
---|
| 228 | Also, save x and bed elevation |
---|
| 229 | """ |
---|
| 230 | |
---|
[4032] | 231 | import data_manager |
---|
[2705] | 232 | |
---|
| 233 | #Initialise writer |
---|
| 234 | self.writer = data_manager.get_dataobject(self, mode = 'w') |
---|
| 235 | |
---|
| 236 | #Store vertices and connectivity |
---|
| 237 | self.writer.store_connectivity() |
---|
| 238 | |
---|
| 239 | |
---|
| 240 | def store_timestep(self, name): |
---|
| 241 | """Store named quantity and time. |
---|
| 242 | |
---|
| 243 | Precondition: |
---|
| 244 | self.write has been initialised |
---|
| 245 | """ |
---|
| 246 | self.writer.store_timestep(name) |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | #=============== End of Shallow Water Domain =============================== |
---|
| 250 | |
---|
| 251 | #Rotation of momentum vector |
---|
| 252 | def rotate(q, normal, direction = 1): |
---|
| 253 | """Rotate the momentum component q (q[1], q[2]) |
---|
| 254 | from x,y coordinates to coordinates based on normal vector. |
---|
| 255 | |
---|
| 256 | If direction is negative the rotation is inverted. |
---|
| 257 | |
---|
| 258 | Input vector is preserved |
---|
| 259 | |
---|
| 260 | This function is specific to the shallow water wave equation |
---|
| 261 | """ |
---|
| 262 | |
---|
| 263 | from Numeric import zeros, Float |
---|
| 264 | |
---|
| 265 | assert len(q) == 3,\ |
---|
| 266 | 'Vector of conserved quantities must have length 3'\ |
---|
| 267 | 'for 2D shallow water equation' |
---|
| 268 | |
---|
| 269 | try: |
---|
| 270 | l = len(normal) |
---|
| 271 | except: |
---|
| 272 | raise 'Normal vector must be an Numeric array' |
---|
| 273 | |
---|
| 274 | assert l == 2, 'Normal vector must have 2 components' |
---|
| 275 | |
---|
| 276 | |
---|
| 277 | n1 = normal[0] |
---|
| 278 | n2 = normal[1] |
---|
| 279 | |
---|
| 280 | r = zeros(len(q), Float) #Rotated quantities |
---|
| 281 | r[0] = q[0] #First quantity, height, is not rotated |
---|
| 282 | |
---|
| 283 | if direction == -1: |
---|
| 284 | n2 = -n2 |
---|
| 285 | |
---|
| 286 | |
---|
| 287 | r[1] = n1*q[1] + n2*q[2] |
---|
| 288 | r[2] = -n2*q[1] + n1*q[2] |
---|
| 289 | |
---|
| 290 | return r |
---|
| 291 | |
---|
| 292 | |
---|
[4032] | 293 | def flux_function(normal, ql, qr, zl, zr): |
---|
[2705] | 294 | """Compute fluxes between volumes for the shallow water wave equation |
---|
| 295 | cast in terms of w = h+z using the 'central scheme' as described in |
---|
| 296 | |
---|
| 297 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
| 298 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
| 299 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
| 300 | |
---|
| 301 | The implemented formula is given in equation (3.15) on page 714 |
---|
| 302 | |
---|
| 303 | Conserved quantities w, uh, are stored as elements 0 and 1 |
---|
| 304 | in the numerical vectors ql an qr. |
---|
| 305 | |
---|
| 306 | Bed elevations zl and zr. |
---|
| 307 | """ |
---|
| 308 | |
---|
| 309 | from config import g, epsilon |
---|
| 310 | from math import sqrt |
---|
| 311 | from Numeric import array |
---|
| 312 | |
---|
[2791] | 313 | #print 'ql',ql |
---|
| 314 | |
---|
[2705] | 315 | #Align momentums with x-axis |
---|
| 316 | #q_left = rotate(ql, normal, direction = 1) |
---|
| 317 | #q_right = rotate(qr, normal, direction = 1) |
---|
| 318 | q_left = ql |
---|
[2716] | 319 | q_left[1] = q_left[1]*normal |
---|
[2705] | 320 | q_right = qr |
---|
[2716] | 321 | q_right[1] = q_right[1]*normal |
---|
[2705] | 322 | |
---|
[3293] | 323 | #z = (zl+zr)/2 #Take average of field values |
---|
| 324 | z = 0.5*(zl+zr) #Take average of field values |
---|
[2705] | 325 | |
---|
| 326 | w_left = q_left[0] #w=h+z |
---|
| 327 | h_left = w_left-z |
---|
| 328 | uh_left = q_left[1] |
---|
| 329 | |
---|
| 330 | if h_left < epsilon: |
---|
| 331 | u_left = 0.0 #Could have been negative |
---|
| 332 | h_left = 0.0 |
---|
| 333 | else: |
---|
| 334 | u_left = uh_left/h_left |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | w_right = q_right[0] #w=h+z |
---|
| 338 | h_right = w_right-z |
---|
| 339 | uh_right = q_right[1] |
---|
| 340 | |
---|
| 341 | |
---|
| 342 | if h_right < epsilon: |
---|
| 343 | u_right = 0.0 #Could have been negative |
---|
| 344 | h_right = 0.0 |
---|
| 345 | else: |
---|
| 346 | u_right = uh_right/h_right |
---|
| 347 | |
---|
| 348 | #vh_left = q_left[2] |
---|
| 349 | #vh_right = q_right[2] |
---|
| 350 | |
---|
[4032] | 351 | #print h_right |
---|
| 352 | #print u_right |
---|
| 353 | #print h_left |
---|
| 354 | #print u_right |
---|
| 355 | |
---|
[2705] | 356 | soundspeed_left = sqrt(g*h_left) |
---|
| 357 | soundspeed_right = sqrt(g*h_right) |
---|
| 358 | |
---|
| 359 | #Maximal wave speed |
---|
[2716] | 360 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
[2705] | 361 | |
---|
| 362 | #Minimal wave speed |
---|
[2716] | 363 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
[2705] | 364 | |
---|
| 365 | #Flux computation |
---|
| 366 | |
---|
| 367 | #flux_left = array([u_left*h_left, |
---|
[3293] | 368 | # u_left*uh_left + 0.5*g*h_left**2]) |
---|
[2705] | 369 | #flux_right = array([u_right*h_right, |
---|
[3293] | 370 | # u_right*uh_right + 0.5*g*h_right**2]) |
---|
[2705] | 371 | flux_left = array([u_left*h_left, |
---|
[3293] | 372 | u_left*uh_left + 0.5*g*h_left*h_left]) |
---|
[2705] | 373 | flux_right = array([u_right*h_right, |
---|
[3293] | 374 | u_right*uh_right + 0.5*g*h_right*h_right]) |
---|
[2705] | 375 | |
---|
| 376 | denom = s_max-s_min |
---|
| 377 | if denom == 0.0: |
---|
| 378 | edgeflux = array([0.0, 0.0]) |
---|
| 379 | max_speed = 0.0 |
---|
| 380 | else: |
---|
| 381 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
| 382 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
[2716] | 383 | |
---|
[2791] | 384 | edgeflux[1] = edgeflux[1]*normal |
---|
[2705] | 385 | |
---|
| 386 | max_speed = max(abs(s_max), abs(s_min)) |
---|
| 387 | |
---|
| 388 | return edgeflux, max_speed |
---|
| 389 | |
---|
[4032] | 390 | |
---|
[3510] | 391 | def flux_function_split(normal, ql, qr, zl, zr): |
---|
| 392 | from config import g, epsilon |
---|
| 393 | from math import sqrt |
---|
| 394 | from Numeric import array |
---|
| 395 | |
---|
| 396 | #print 'ql',ql |
---|
| 397 | |
---|
| 398 | #Align momentums with x-axis |
---|
| 399 | #q_left = rotate(ql, normal, direction = 1) |
---|
| 400 | #q_right = rotate(qr, normal, direction = 1) |
---|
| 401 | q_left = ql |
---|
| 402 | q_left[1] = q_left[1]*normal |
---|
| 403 | q_right = qr |
---|
| 404 | q_right[1] = q_right[1]*normal |
---|
| 405 | |
---|
| 406 | #z = (zl+zr)/2 #Take average of field values |
---|
| 407 | z = 0.5*(zl+zr) #Take average of field values |
---|
| 408 | |
---|
| 409 | w_left = q_left[0] #w=h+z |
---|
| 410 | h_left = w_left-z |
---|
| 411 | uh_left = q_left[1] |
---|
| 412 | |
---|
| 413 | if h_left < epsilon: |
---|
| 414 | u_left = 0.0 #Could have been negative |
---|
| 415 | h_left = 0.0 |
---|
| 416 | else: |
---|
| 417 | u_left = uh_left/h_left |
---|
| 418 | |
---|
| 419 | |
---|
| 420 | w_right = q_right[0] #w=h+z |
---|
| 421 | h_right = w_right-z |
---|
| 422 | uh_right = q_right[1] |
---|
| 423 | |
---|
| 424 | |
---|
| 425 | if h_right < epsilon: |
---|
| 426 | u_right = 0.0 #Could have been negative |
---|
| 427 | h_right = 0.0 |
---|
| 428 | else: |
---|
| 429 | u_right = uh_right/h_right |
---|
| 430 | |
---|
| 431 | #vh_left = q_left[2] |
---|
| 432 | #vh_right = q_right[2] |
---|
| 433 | |
---|
| 434 | #soundspeed_left = sqrt(g*h_left) |
---|
| 435 | #soundspeed_right = sqrt(g*h_right) |
---|
| 436 | |
---|
| 437 | #Maximal wave speed |
---|
| 438 | #s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
| 439 | s_max = max(u_left, u_right, 0) |
---|
| 440 | |
---|
| 441 | #Minimal wave speed |
---|
| 442 | #s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
| 443 | s_min = min(u_left, u_right, 0) |
---|
| 444 | |
---|
| 445 | #Flux computation |
---|
| 446 | |
---|
| 447 | #flux_left = array([u_left*h_left, |
---|
| 448 | # u_left*uh_left + 0.5*g*h_left*h_left]) |
---|
| 449 | #flux_right = array([u_right*h_right, |
---|
| 450 | # u_right*uh_right + 0.5*g*h_right*h_right]) |
---|
| 451 | flux_left = array([u_left*h_left, |
---|
| 452 | u_left*uh_left])# + 0.5*g*h_left*h_left]) |
---|
| 453 | flux_right = array([u_right*h_right, |
---|
| 454 | u_right*uh_right])# + 0.5*g*h_right*h_right]) |
---|
| 455 | |
---|
| 456 | denom = s_max-s_min |
---|
| 457 | if denom == 0.0: |
---|
| 458 | edgeflux = array([0.0, 0.0]) |
---|
| 459 | max_speed = 0.0 |
---|
| 460 | else: |
---|
| 461 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
| 462 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
| 463 | |
---|
| 464 | edgeflux[1] = edgeflux[1]*normal |
---|
| 465 | |
---|
| 466 | max_speed = max(abs(s_max), abs(s_min)) |
---|
| 467 | |
---|
| 468 | return edgeflux, max_speed |
---|
| 469 | |
---|
[4032] | 470 | def compute_timestep(domain): |
---|
| 471 | import sys |
---|
| 472 | from Numeric import zeros, Float |
---|
[3510] | 473 | |
---|
[4032] | 474 | N = domain.number_of_elements |
---|
| 475 | |
---|
| 476 | #Shortcuts |
---|
| 477 | Stage = domain.quantities['stage'] |
---|
| 478 | Xmom = domain.quantities['xmomentum'] |
---|
| 479 | Bed = domain.quantities['elevation'] |
---|
| 480 | |
---|
| 481 | stage = Stage.vertex_values |
---|
| 482 | xmom = Xmom.vertex_values |
---|
| 483 | bed = Bed.vertex_values |
---|
| 484 | |
---|
| 485 | stage_bdry = Stage.boundary_values |
---|
| 486 | xmom_bdry = Xmom.boundary_values |
---|
| 487 | |
---|
| 488 | flux = zeros(2, Float) #Work array for summing up fluxes |
---|
| 489 | ql = zeros(2, Float) |
---|
| 490 | qr = zeros(2, Float) |
---|
| 491 | |
---|
| 492 | #Loop |
---|
| 493 | timestep = float(sys.maxint) |
---|
| 494 | enter = True |
---|
| 495 | for k in range(N): |
---|
| 496 | |
---|
| 497 | flux[:] = 0. #Reset work array |
---|
| 498 | for i in range(2): |
---|
| 499 | #Quantities inside volume facing neighbour i |
---|
| 500 | ql = [stage[k, i], xmom[k, i]] |
---|
| 501 | zl = bed[k, i] |
---|
| 502 | |
---|
| 503 | #Quantities at neighbour on nearest face |
---|
| 504 | n = domain.neighbours[k,i] |
---|
| 505 | if n < 0: |
---|
| 506 | m = -n-1 #Convert negative flag to index |
---|
| 507 | qr[0] = stage_bdry[m] |
---|
| 508 | qr[1] = xmom_bdry[m] |
---|
| 509 | zr = zl #Extend bed elevation to boundary |
---|
| 510 | else: |
---|
| 511 | #m = domain.neighbour_edges[k,i] |
---|
| 512 | m = domain.neighbour_vertices[k,i] |
---|
| 513 | qr[0] = stage[n, m] |
---|
| 514 | qr[1] = xmom[n, m] |
---|
| 515 | zr = bed[n, m] |
---|
| 516 | |
---|
| 517 | |
---|
| 518 | #Outward pointing normal vector |
---|
| 519 | normal = domain.normals[k, i] |
---|
| 520 | |
---|
| 521 | if domain.split == False: |
---|
| 522 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
| 523 | elif domain.split == True: |
---|
| 524 | edgeflux, max_speed = flux_function_split(normal, ql, qr, zl, zr) |
---|
| 525 | #Update optimal_timestep |
---|
| 526 | try: |
---|
| 527 | timestep = min(timestep, domain.cfl*0.5*domain.areas[k]/max_speed) |
---|
| 528 | except ZeroDivisionError: |
---|
| 529 | pass |
---|
| 530 | |
---|
| 531 | domain.timestep = timestep |
---|
| 532 | |
---|
[2705] | 533 | def compute_fluxes(domain): |
---|
| 534 | """Compute all fluxes and the timestep suitable for all volumes |
---|
| 535 | in domain. |
---|
| 536 | |
---|
| 537 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 538 | |
---|
| 539 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 540 | Resulting flux is then scaled by area and stored in |
---|
| 541 | explicit_update for each of the three conserved quantities |
---|
| 542 | stage, xmomentum and ymomentum |
---|
| 543 | |
---|
| 544 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 545 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 546 | those is computed as the next overall timestep. |
---|
| 547 | |
---|
| 548 | Post conditions: |
---|
| 549 | domain.explicit_update is reset to computed flux values |
---|
| 550 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 551 | """ |
---|
| 552 | |
---|
| 553 | import sys |
---|
| 554 | from Numeric import zeros, Float |
---|
| 555 | |
---|
| 556 | N = domain.number_of_elements |
---|
| 557 | |
---|
| 558 | #Shortcuts |
---|
| 559 | Stage = domain.quantities['stage'] |
---|
| 560 | Xmom = domain.quantities['xmomentum'] |
---|
| 561 | # Ymom = domain.quantities['ymomentum'] |
---|
| 562 | Bed = domain.quantities['elevation'] |
---|
| 563 | |
---|
| 564 | #Arrays |
---|
[2716] | 565 | #stage = Stage.edge_values |
---|
| 566 | #xmom = Xmom.edge_values |
---|
[2705] | 567 | # ymom = Ymom.edge_values |
---|
[2716] | 568 | #bed = Bed.edge_values |
---|
| 569 | |
---|
| 570 | stage = Stage.vertex_values |
---|
| 571 | xmom = Xmom.vertex_values |
---|
| 572 | bed = Bed.vertex_values |
---|
| 573 | |
---|
[2791] | 574 | #print 'stage edge values', stage |
---|
| 575 | #print 'xmom edge values', xmom |
---|
| 576 | #print 'bed values', bed |
---|
[2705] | 577 | |
---|
| 578 | stage_bdry = Stage.boundary_values |
---|
| 579 | xmom_bdry = Xmom.boundary_values |
---|
[2791] | 580 | #print 'stage_bdry',stage_bdry |
---|
| 581 | #print 'xmom_bdry', xmom_bdry |
---|
[2705] | 582 | # ymom_bdry = Ymom.boundary_values |
---|
| 583 | |
---|
| 584 | # flux = zeros(3, Float) #Work array for summing up fluxes |
---|
| 585 | flux = zeros(2, Float) #Work array for summing up fluxes |
---|
[2791] | 586 | ql = zeros(2, Float) |
---|
| 587 | qr = zeros(2, Float) |
---|
[2705] | 588 | |
---|
| 589 | #Loop |
---|
| 590 | timestep = float(sys.maxint) |
---|
[3335] | 591 | enter = True |
---|
[2705] | 592 | for k in range(N): |
---|
| 593 | |
---|
| 594 | flux[:] = 0. #Reset work array |
---|
| 595 | #for i in range(3): |
---|
| 596 | for i in range(2): |
---|
| 597 | #Quantities inside volume facing neighbour i |
---|
[3293] | 598 | #ql[0] = stage[k, i] |
---|
| 599 | #ql[1] = xmom[k, i] |
---|
| 600 | ql = [stage[k, i], xmom[k, i]] |
---|
[2705] | 601 | zl = bed[k, i] |
---|
| 602 | |
---|
| 603 | #Quantities at neighbour on nearest face |
---|
| 604 | n = domain.neighbours[k,i] |
---|
| 605 | if n < 0: |
---|
| 606 | m = -n-1 #Convert negative flag to index |
---|
[2791] | 607 | qr[0] = stage_bdry[m] |
---|
| 608 | qr[1] = xmom_bdry[m] |
---|
[2705] | 609 | zr = zl #Extend bed elevation to boundary |
---|
| 610 | else: |
---|
[2716] | 611 | #m = domain.neighbour_edges[k,i] |
---|
| 612 | m = domain.neighbour_vertices[k,i] |
---|
[2705] | 613 | #qr = [stage[n, m], xmom[n, m], ymom[n, m]] |
---|
[2791] | 614 | qr[0] = stage[n, m] |
---|
| 615 | qr[1] = xmom[n, m] |
---|
[2705] | 616 | zr = bed[n, m] |
---|
| 617 | |
---|
| 618 | |
---|
| 619 | #Outward pointing normal vector |
---|
[2791] | 620 | normal = domain.normals[k, i] |
---|
[3293] | 621 | |
---|
[2705] | 622 | #Flux computation using provided function |
---|
| 623 | #edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
[2791] | 624 | #print 'ql',ql |
---|
| 625 | #print 'qr',qr |
---|
[2716] | 626 | |
---|
[3510] | 627 | |
---|
[4032] | 628 | if domain.split == False: |
---|
| 629 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
| 630 | elif domain.split == True: |
---|
[3510] | 631 | edgeflux, max_speed = flux_function_split(normal, ql, qr, zl, zr) |
---|
[2791] | 632 | #print 'edgeflux', edgeflux |
---|
| 633 | |
---|
[2716] | 634 | # THIS IS THE LINE TO DEAL WITH LEFT AND RIGHT FLUXES |
---|
| 635 | # flux = edgefluxleft - edgefluxright |
---|
| 636 | flux -= edgeflux #* domain.edgelengths[k,i] |
---|
[2705] | 637 | #Update optimal_timestep |
---|
| 638 | try: |
---|
[2716] | 639 | #timestep = min(timestep, 0.5*domain.radii[k]/max_speed) |
---|
[3370] | 640 | timestep = min(timestep, domain.cfl*0.5*domain.areas[k]/max_speed) |
---|
[2705] | 641 | except ZeroDivisionError: |
---|
| 642 | pass |
---|
| 643 | |
---|
| 644 | #Normalise by area and store for when all conserved |
---|
| 645 | #quantities get updated |
---|
[3335] | 646 | flux /= domain.areas[k] |
---|
[3510] | 647 | |
---|
[2705] | 648 | Stage.explicit_update[k] = flux[0] |
---|
| 649 | Xmom.explicit_update[k] = flux[1] |
---|
| 650 | #Ymom.explicit_update[k] = flux[2] |
---|
[4032] | 651 | #print "flux cell",k,flux[0] |
---|
[2705] | 652 | |
---|
| 653 | domain.timestep = timestep |
---|
[4032] | 654 | #print domain.quantities['stage'].centroid_values |
---|
[2705] | 655 | |
---|
| 656 | #################################### |
---|
| 657 | |
---|
| 658 | # Module functions for gradient limiting (distribute_to_vertices_and_edges) |
---|
| 659 | |
---|
| 660 | def distribute_to_vertices_and_edges(domain): |
---|
| 661 | """Distribution from centroids to vertices specific to the |
---|
| 662 | shallow water wave |
---|
| 663 | equation. |
---|
| 664 | |
---|
| 665 | It will ensure that h (w-z) is always non-negative even in the |
---|
| 666 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
| 667 | and deep cases. |
---|
| 668 | |
---|
| 669 | In addition, all conserved quantities get distributed as per either a |
---|
| 670 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 671 | |
---|
| 672 | FIXME: more explanation about removal of artificial variability etc |
---|
| 673 | |
---|
| 674 | Precondition: |
---|
| 675 | All quantities defined at centroids and bed elevation defined at |
---|
| 676 | vertices. |
---|
| 677 | |
---|
| 678 | Postcondition |
---|
| 679 | Conserved quantities defined at vertices |
---|
| 680 | |
---|
| 681 | """ |
---|
| 682 | |
---|
[3335] | 683 | #from config import optimised_gradient_limiter |
---|
[2705] | 684 | |
---|
| 685 | #Remove very thin layers of water |
---|
[3510] | 686 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
[4032] | 687 | |
---|
[2705] | 688 | |
---|
| 689 | #Extrapolate all conserved quantities |
---|
[3293] | 690 | #if optimised_gradient_limiter: |
---|
| 691 | # #MH090605 if second order, |
---|
| 692 | # #perform the extrapolation and limiting on |
---|
| 693 | # #all of the conserved quantities |
---|
[2705] | 694 | |
---|
[3293] | 695 | # if (domain.order == 1): |
---|
| 696 | # for name in domain.conserved_quantities: |
---|
| 697 | # Q = domain.quantities[name] |
---|
| 698 | # Q.extrapolate_first_order() |
---|
| 699 | # elif domain.order == 2: |
---|
| 700 | # domain.extrapolate_second_order_sw() |
---|
| 701 | # else: |
---|
| 702 | # raise 'Unknown order' |
---|
| 703 | #else: |
---|
| 704 | #old code: |
---|
[4032] | 705 | |
---|
[3293] | 706 | for name in domain.conserved_quantities: |
---|
| 707 | Q = domain.quantities[name] |
---|
| 708 | if domain.order == 1: |
---|
| 709 | Q.extrapolate_first_order() |
---|
[2705] | 710 | elif domain.order == 2: |
---|
[4032] | 711 | #print "add extrapolate second order to shallow water" |
---|
| 712 | #if name != 'height': |
---|
[3293] | 713 | Q.extrapolate_second_order() |
---|
[3424] | 714 | #Q.limit() |
---|
[2705] | 715 | else: |
---|
| 716 | raise 'Unknown order' |
---|
| 717 | |
---|
| 718 | #Take bed elevation into account when water heights are small |
---|
[3424] | 719 | #balance_deep_and_shallow(domain) |
---|
[4032] | 720 | #protect_against_infinitesimal_and_negative_heights(domain) |
---|
[2705] | 721 | |
---|
[4032] | 722 | #Compute edge values by interpolation |
---|
[2716] | 723 | #for name in domain.conserved_quantities: |
---|
| 724 | # Q = domain.quantities[name] |
---|
[4032] | 725 | # Q.interpolate_from_vertices_to_edges() |
---|
| 726 | |
---|
[2705] | 727 | def protect_against_infinitesimal_and_negative_heights(domain): |
---|
| 728 | """Protect against infinitesimal heights and associated high velocities |
---|
| 729 | """ |
---|
| 730 | |
---|
| 731 | #Shortcuts |
---|
| 732 | wc = domain.quantities['stage'].centroid_values |
---|
| 733 | zc = domain.quantities['elevation'].centroid_values |
---|
| 734 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
| 735 | # ymomc = domain.quantities['ymomentum'].centroid_values |
---|
| 736 | hc = wc - zc #Water depths at centroids |
---|
| 737 | |
---|
[4032] | 738 | zv = domain.quantities['elevation'].vertex_values |
---|
| 739 | wv = domain.quantities['stage'].vertex_values |
---|
| 740 | hv = wv-zv |
---|
| 741 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
| 742 | #remove the above two lines and corresponding code below |
---|
| 743 | |
---|
[2705] | 744 | #Update |
---|
| 745 | for k in range(domain.number_of_elements): |
---|
| 746 | |
---|
| 747 | if hc[k] < domain.minimum_allowed_height: |
---|
| 748 | #Control stage |
---|
| 749 | if hc[k] < domain.epsilon: |
---|
| 750 | wc[k] = zc[k] # Contain 'lost mass' error |
---|
[4032] | 751 | wv[k,0] = zv[k,0] |
---|
| 752 | wv[k,1] = zv[k,1] |
---|
| 753 | |
---|
[2705] | 754 | xmomc[k] = 0.0 |
---|
[4032] | 755 | |
---|
| 756 | #N = domain.number_of_elements |
---|
| 757 | #if (k == 0) | (k==N-1): |
---|
| 758 | # wc[k] = zc[k] # Contain 'lost mass' error |
---|
| 759 | # wv[k,0] = zv[k,0] |
---|
| 760 | # wv[k,1] = zv[k,1] |
---|
| 761 | |
---|
[2705] | 762 | def h_limiter(domain): |
---|
| 763 | """Limit slopes for each volume to eliminate artificial variance |
---|
| 764 | introduced by e.g. second order extrapolator |
---|
| 765 | |
---|
| 766 | limit on h = w-z |
---|
| 767 | |
---|
| 768 | This limiter depends on two quantities (w,z) so it resides within |
---|
| 769 | this module rather than within quantity.py |
---|
| 770 | """ |
---|
| 771 | |
---|
| 772 | from Numeric import zeros, Float |
---|
| 773 | |
---|
| 774 | N = domain.number_of_elements |
---|
| 775 | beta_h = domain.beta_h |
---|
| 776 | |
---|
| 777 | #Shortcuts |
---|
| 778 | wc = domain.quantities['stage'].centroid_values |
---|
| 779 | zc = domain.quantities['elevation'].centroid_values |
---|
| 780 | hc = wc - zc |
---|
| 781 | |
---|
| 782 | wv = domain.quantities['stage'].vertex_values |
---|
| 783 | zv = domain.quantities['elevation'].vertex_values |
---|
| 784 | hv = wv-zv |
---|
| 785 | |
---|
| 786 | hvbar = zeros(hv.shape, Float) #h-limited values |
---|
| 787 | |
---|
| 788 | #Find min and max of this and neighbour's centroid values |
---|
| 789 | hmax = zeros(hc.shape, Float) |
---|
| 790 | hmin = zeros(hc.shape, Float) |
---|
| 791 | |
---|
| 792 | for k in range(N): |
---|
| 793 | hmax[k] = hmin[k] = hc[k] |
---|
| 794 | #for i in range(3): |
---|
| 795 | for i in range(2): |
---|
| 796 | n = domain.neighbours[k,i] |
---|
| 797 | if n >= 0: |
---|
| 798 | hn = hc[n] #Neighbour's centroid value |
---|
| 799 | |
---|
| 800 | hmin[k] = min(hmin[k], hn) |
---|
| 801 | hmax[k] = max(hmax[k], hn) |
---|
| 802 | |
---|
| 803 | |
---|
| 804 | #Diffences between centroids and maxima/minima |
---|
| 805 | dhmax = hmax - hc |
---|
| 806 | dhmin = hmin - hc |
---|
| 807 | |
---|
| 808 | #Deltas between vertex and centroid values |
---|
| 809 | dh = zeros(hv.shape, Float) |
---|
| 810 | #for i in range(3): |
---|
| 811 | for i in range(2): |
---|
| 812 | dh[:,i] = hv[:,i] - hc |
---|
| 813 | |
---|
| 814 | #Phi limiter |
---|
| 815 | for k in range(N): |
---|
| 816 | |
---|
| 817 | #Find the gradient limiter (phi) across vertices |
---|
| 818 | phi = 1.0 |
---|
| 819 | #for i in range(3): |
---|
| 820 | for i in range(2): |
---|
| 821 | r = 1.0 |
---|
| 822 | if (dh[k,i] > 0): r = dhmax[k]/dh[k,i] |
---|
| 823 | if (dh[k,i] < 0): r = dhmin[k]/dh[k,i] |
---|
| 824 | |
---|
| 825 | phi = min( min(r*beta_h, 1), phi ) |
---|
| 826 | |
---|
| 827 | #Then update using phi limiter |
---|
| 828 | #for i in range(3): |
---|
| 829 | for i in range(2): |
---|
| 830 | hvbar[k,i] = hc[k] + phi*dh[k,i] |
---|
| 831 | |
---|
| 832 | return hvbar |
---|
| 833 | |
---|
| 834 | def balance_deep_and_shallow(domain): |
---|
| 835 | """Compute linear combination between stage as computed by |
---|
| 836 | gradient-limiters limiting using w, and stage computed by |
---|
| 837 | gradient-limiters limiting using h (h-limiter). |
---|
| 838 | The former takes precedence when heights are large compared to the |
---|
| 839 | bed slope while the latter takes precedence when heights are |
---|
| 840 | relatively small. Anything in between is computed as a balanced |
---|
| 841 | linear combination in order to avoid numerical disturbances which |
---|
| 842 | would otherwise appear as a result of hard switching between |
---|
| 843 | modes. |
---|
| 844 | |
---|
| 845 | The h-limiter is always applied irrespective of the order. |
---|
| 846 | """ |
---|
| 847 | |
---|
| 848 | #Shortcuts |
---|
| 849 | wc = domain.quantities['stage'].centroid_values |
---|
| 850 | zc = domain.quantities['elevation'].centroid_values |
---|
| 851 | hc = wc - zc |
---|
| 852 | |
---|
| 853 | wv = domain.quantities['stage'].vertex_values |
---|
| 854 | zv = domain.quantities['elevation'].vertex_values |
---|
| 855 | hv = wv-zv |
---|
| 856 | |
---|
| 857 | #Limit h |
---|
| 858 | hvbar = h_limiter(domain) |
---|
| 859 | |
---|
| 860 | for k in range(domain.number_of_elements): |
---|
| 861 | #Compute maximal variation in bed elevation |
---|
| 862 | # This quantitiy is |
---|
| 863 | # dz = max_i abs(z_i - z_c) |
---|
| 864 | # and it is independent of dimension |
---|
| 865 | # In the 1d case zc = (z0+z1)/2 |
---|
| 866 | # In the 2d case zc = (z0+z1+z2)/3 |
---|
| 867 | |
---|
| 868 | dz = max(abs(zv[k,0]-zc[k]), |
---|
| 869 | abs(zv[k,1]-zc[k]))#, |
---|
| 870 | # abs(zv[k,2]-zc[k])) |
---|
| 871 | |
---|
| 872 | |
---|
| 873 | hmin = min( hv[k,:] ) |
---|
| 874 | |
---|
| 875 | #Create alpha in [0,1], where alpha==0 means using the h-limited |
---|
| 876 | #stage and alpha==1 means using the w-limited stage as |
---|
| 877 | #computed by the gradient limiter (both 1st or 2nd order) |
---|
| 878 | |
---|
| 879 | #If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
| 880 | #If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
| 881 | |
---|
| 882 | if dz > 0.0: |
---|
| 883 | alpha = max( min( 2*hmin/dz, 1.0), 0.0 ) |
---|
| 884 | else: |
---|
| 885 | #Flat bed |
---|
| 886 | alpha = 1.0 |
---|
| 887 | |
---|
[4032] | 888 | alpha = 0.0 |
---|
[2705] | 889 | #Let |
---|
| 890 | # |
---|
| 891 | # wvi be the w-limited stage (wvi = zvi + hvi) |
---|
| 892 | # wvi- be the h-limited state (wvi- = zvi + hvi-) |
---|
| 893 | # |
---|
| 894 | # |
---|
| 895 | #where i=0,1,2 denotes the vertex ids |
---|
| 896 | # |
---|
| 897 | #Weighted balance between w-limited and h-limited stage is |
---|
| 898 | # |
---|
| 899 | # wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) |
---|
| 900 | # |
---|
| 901 | #It follows that the updated wvi is |
---|
| 902 | # wvi := zvi + (1-alpha)*hvi- + alpha*hvi |
---|
| 903 | # |
---|
| 904 | # Momentum is balanced between constant and limited |
---|
| 905 | |
---|
| 906 | |
---|
| 907 | #for i in range(3): |
---|
| 908 | # wv[k,i] = zv[k,i] + hvbar[k,i] |
---|
| 909 | |
---|
| 910 | #return |
---|
| 911 | |
---|
| 912 | if alpha < 1: |
---|
| 913 | |
---|
| 914 | #for i in range(3): |
---|
| 915 | for i in range(2): |
---|
[4032] | 916 | wv[k,i] = zv[k,i] + (1.0-alpha)*hvbar[k,i] + alpha*hv[k,i] |
---|
[2705] | 917 | |
---|
| 918 | #Momentums at centroids |
---|
| 919 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
| 920 | # ymomc = domain.quantities['ymomentum'].centroid_values |
---|
| 921 | |
---|
| 922 | #Momentums at vertices |
---|
| 923 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
| 924 | # ymomv = domain.quantities['ymomentum'].vertex_values |
---|
| 925 | |
---|
| 926 | # Update momentum as a linear combination of |
---|
| 927 | # xmomc and ymomc (shallow) and momentum |
---|
| 928 | # from extrapolator xmomv and ymomv (deep). |
---|
[4032] | 929 | xmomv[k,:] = (1.0-alpha)*xmomc[k] + alpha*xmomv[k,:] |
---|
[2705] | 930 | # ymomv[k,:] = (1-alpha)*ymomc[k] + alpha*ymomv[k,:] |
---|
| 931 | |
---|
| 932 | |
---|
| 933 | ############################################### |
---|
| 934 | #Boundaries - specific to the shallow water wave equation |
---|
| 935 | class Reflective_boundary(Boundary): |
---|
| 936 | """Reflective boundary returns same conserved quantities as |
---|
| 937 | those present in its neighbour volume but reflected. |
---|
| 938 | |
---|
| 939 | This class is specific to the shallow water equation as it |
---|
| 940 | works with the momentum quantities assumed to be the second |
---|
| 941 | and third conserved quantities. |
---|
| 942 | """ |
---|
| 943 | |
---|
| 944 | def __init__(self, domain = None): |
---|
| 945 | Boundary.__init__(self) |
---|
| 946 | |
---|
| 947 | if domain is None: |
---|
| 948 | msg = 'Domain must be specified for reflective boundary' |
---|
| 949 | raise msg |
---|
| 950 | |
---|
| 951 | #Handy shorthands |
---|
[2716] | 952 | #self.stage = domain.quantities['stage'].edge_values |
---|
| 953 | #self.xmom = domain.quantities['xmomentum'].edge_values |
---|
[2705] | 954 | #self.ymom = domain.quantities['ymomentum'].edge_values |
---|
[4032] | 955 | self.normals = domain.normals |
---|
[2716] | 956 | self.stage = domain.quantities['stage'].vertex_values |
---|
| 957 | self.xmom = domain.quantities['xmomentum'].vertex_values |
---|
[2705] | 958 | |
---|
| 959 | from Numeric import zeros, Float |
---|
| 960 | #self.conserved_quantities = zeros(3, Float) |
---|
| 961 | self.conserved_quantities = zeros(2, Float) |
---|
| 962 | |
---|
| 963 | def __repr__(self): |
---|
| 964 | return 'Reflective_boundary' |
---|
| 965 | |
---|
| 966 | |
---|
| 967 | def evaluate(self, vol_id, edge_id): |
---|
| 968 | """Reflective boundaries reverses the outward momentum |
---|
| 969 | of the volume they serve. |
---|
| 970 | """ |
---|
| 971 | |
---|
| 972 | q = self.conserved_quantities |
---|
| 973 | q[0] = self.stage[vol_id, edge_id] |
---|
| 974 | q[1] = self.xmom[vol_id, edge_id] |
---|
| 975 | #q[2] = self.ymom[vol_id, edge_id] |
---|
| 976 | #normal = self.normals[vol_id, 2*edge_id:2*edge_id+2] |
---|
| 977 | #normal = self.normals[vol_id, 2*edge_id:2*edge_id+1] |
---|
[4032] | 978 | normal = self.normals[vol_id,edge_id] |
---|
[2705] | 979 | |
---|
| 980 | #r = rotate(q, normal, direction = 1) |
---|
| 981 | #r[1] = -r[1] |
---|
| 982 | #q = rotate(r, normal, direction = -1) |
---|
| 983 | r = q |
---|
[4032] | 984 | r[1] = normal*r[1] |
---|
| 985 | r[1] = -r[1] |
---|
| 986 | r[1] = normal*r[1] |
---|
[2705] | 987 | q = r |
---|
[2716] | 988 | #For start interval there is no outward momentum so do not need to |
---|
| 989 | #reverse direction in this case |
---|
[2705] | 990 | |
---|
| 991 | return q |
---|
| 992 | |
---|
[4032] | 993 | class Dirichlet_boundary(Boundary): |
---|
| 994 | """Dirichlet boundary returns constant values for the |
---|
| 995 | conserved quantities |
---|
| 996 | """ |
---|
[2705] | 997 | |
---|
[4032] | 998 | |
---|
| 999 | def __init__(self, conserved_quantities=None): |
---|
| 1000 | Boundary.__init__(self) |
---|
| 1001 | |
---|
| 1002 | if conserved_quantities is None: |
---|
| 1003 | msg = 'Must specify one value for each conserved quantity' |
---|
| 1004 | raise msg |
---|
| 1005 | |
---|
| 1006 | from Numeric import array, Float |
---|
| 1007 | self.conserved_quantities=array(conserved_quantities).astype(Float) |
---|
| 1008 | |
---|
| 1009 | def __repr__(self): |
---|
| 1010 | return 'Dirichlet boundary (%s)' %self.conserved_quantities |
---|
| 1011 | |
---|
| 1012 | def evaluate(self, vol_id=None, edge_id=None): |
---|
| 1013 | return self.conserved_quantities |
---|
| 1014 | |
---|
| 1015 | |
---|
[2705] | 1016 | ######################### |
---|
| 1017 | #Standard forcing terms: |
---|
| 1018 | # |
---|
| 1019 | def gravity(domain): |
---|
| 1020 | """Apply gravitational pull in the presence of bed slope |
---|
| 1021 | """ |
---|
| 1022 | |
---|
[4032] | 1023 | from util import gradient |
---|
[2705] | 1024 | from Numeric import zeros, Float, array, sum |
---|
| 1025 | |
---|
| 1026 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
[4032] | 1027 | stage = domain.quantities['stage'].explicit_update |
---|
[2705] | 1028 | # ymom = domain.quantities['ymomentum'].explicit_update |
---|
| 1029 | |
---|
| 1030 | Stage = domain.quantities['stage'] |
---|
| 1031 | Elevation = domain.quantities['elevation'] |
---|
[2716] | 1032 | #h = Stage.edge_values - Elevation.edge_values |
---|
| 1033 | h = Stage.vertex_values - Elevation.vertex_values |
---|
[3510] | 1034 | b = Elevation.vertex_values |
---|
| 1035 | w = Stage.vertex_values |
---|
[2705] | 1036 | |
---|
| 1037 | x = domain.get_vertex_coordinates() |
---|
| 1038 | g = domain.g |
---|
| 1039 | |
---|
| 1040 | for k in range(domain.number_of_elements): |
---|
| 1041 | # avg_h = sum( h[k,:] )/3 |
---|
| 1042 | avg_h = sum( h[k,:] )/2 |
---|
| 1043 | |
---|
| 1044 | #Compute bed slope |
---|
| 1045 | #x0, y0, x1, y1, x2, y2 = x[k,:] |
---|
| 1046 | x0, x1 = x[k,:] |
---|
| 1047 | #z0, z1, z2 = v[k,:] |
---|
[3510] | 1048 | b0, b1 = b[k,:] |
---|
[2705] | 1049 | |
---|
[3510] | 1050 | w0, w1 = w[k,:] |
---|
| 1051 | wx = gradient(x0, x1, w0, w1) |
---|
| 1052 | |
---|
[2705] | 1053 | #zx, zy = gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2) |
---|
[3510] | 1054 | bx = gradient(x0, x1, b0, b1) |
---|
[2705] | 1055 | |
---|
[4032] | 1056 | #Update momentum (explicit update is reset to source values) |
---|
| 1057 | if domain.split == False: |
---|
[3510] | 1058 | xmom[k] += -g*bx*avg_h |
---|
[4032] | 1059 | #xmom[k] = -g*bx*avg_h |
---|
| 1060 | #stage[k] = 0.0 |
---|
| 1061 | elif domain.split == True: |
---|
[3510] | 1062 | xmom[k] += -g*wx*avg_h |
---|
[4032] | 1063 | #xmom[k] = -g*wx*avg_h |
---|
| 1064 | #ymom[k] += -g*zy*avg_h |
---|
| 1065 | |
---|
[2705] | 1066 | def manning_friction(domain): |
---|
| 1067 | """Apply (Manning) friction to water momentum |
---|
| 1068 | """ |
---|
| 1069 | |
---|
| 1070 | from math import sqrt |
---|
| 1071 | |
---|
| 1072 | w = domain.quantities['stage'].centroid_values |
---|
| 1073 | z = domain.quantities['elevation'].centroid_values |
---|
| 1074 | h = w-z |
---|
| 1075 | |
---|
| 1076 | uh = domain.quantities['xmomentum'].centroid_values |
---|
[2716] | 1077 | #vh = domain.quantities['ymomentum'].centroid_values |
---|
[2705] | 1078 | eta = domain.quantities['friction'].centroid_values |
---|
| 1079 | |
---|
| 1080 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
[2716] | 1081 | #ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
[2705] | 1082 | |
---|
| 1083 | N = domain.number_of_elements |
---|
| 1084 | eps = domain.minimum_allowed_height |
---|
| 1085 | g = domain.g |
---|
| 1086 | |
---|
| 1087 | for k in range(N): |
---|
| 1088 | if eta[k] >= eps: |
---|
| 1089 | if h[k] >= eps: |
---|
[2716] | 1090 | #S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
| 1091 | S = -g * eta[k]**2 * uh[k] |
---|
[2705] | 1092 | S /= h[k]**(7.0/3) |
---|
| 1093 | |
---|
| 1094 | #Update momentum |
---|
| 1095 | xmom_update[k] += S*uh[k] |
---|
[2716] | 1096 | #ymom_update[k] += S*vh[k] |
---|
[2705] | 1097 | |
---|
| 1098 | def linear_friction(domain): |
---|
| 1099 | """Apply linear friction to water momentum |
---|
| 1100 | |
---|
| 1101 | Assumes quantity: 'linear_friction' to be present |
---|
| 1102 | """ |
---|
| 1103 | |
---|
| 1104 | from math import sqrt |
---|
| 1105 | |
---|
| 1106 | w = domain.quantities['stage'].centroid_values |
---|
| 1107 | z = domain.quantities['elevation'].centroid_values |
---|
| 1108 | h = w-z |
---|
| 1109 | |
---|
| 1110 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 1111 | # vh = domain.quantities['ymomentum'].centroid_values |
---|
| 1112 | tau = domain.quantities['linear_friction'].centroid_values |
---|
| 1113 | |
---|
| 1114 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 1115 | # ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
| 1116 | |
---|
| 1117 | N = domain.number_of_elements |
---|
| 1118 | eps = domain.minimum_allowed_height |
---|
| 1119 | g = domain.g #Not necessary? Why was this added? |
---|
| 1120 | |
---|
| 1121 | for k in range(N): |
---|
| 1122 | if tau[k] >= eps: |
---|
| 1123 | if h[k] >= eps: |
---|
| 1124 | S = -tau[k]/h[k] |
---|
| 1125 | |
---|
| 1126 | #Update momentum |
---|
| 1127 | xmom_update[k] += S*uh[k] |
---|
| 1128 | # ymom_update[k] += S*vh[k] |
---|
| 1129 | |
---|
| 1130 | |
---|
| 1131 | |
---|
| 1132 | def check_forcefield(f): |
---|
| 1133 | """Check that f is either |
---|
| 1134 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
| 1135 | and that it returns an array or a list of same length |
---|
| 1136 | as x and y |
---|
| 1137 | 2: a scalar |
---|
| 1138 | """ |
---|
| 1139 | |
---|
| 1140 | from Numeric import ones, Float, array |
---|
| 1141 | |
---|
| 1142 | |
---|
| 1143 | if callable(f): |
---|
| 1144 | #N = 3 |
---|
| 1145 | N = 2 |
---|
| 1146 | #x = ones(3, Float) |
---|
| 1147 | #y = ones(3, Float) |
---|
| 1148 | x = ones(2, Float) |
---|
[2791] | 1149 | #y = ones(2, Float) |
---|
[2705] | 1150 | |
---|
| 1151 | try: |
---|
| 1152 | #q = f(1.0, x=x, y=y) |
---|
| 1153 | q = f(1.0, x=x) |
---|
| 1154 | except Exception, e: |
---|
| 1155 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
| 1156 | #FIXME: Reconsider this semantics |
---|
| 1157 | raise msg |
---|
| 1158 | |
---|
| 1159 | try: |
---|
| 1160 | q = array(q).astype(Float) |
---|
| 1161 | except: |
---|
| 1162 | msg = 'Return value from vector function %s could ' %f |
---|
| 1163 | msg += 'not be converted into a Numeric array of floats.\n' |
---|
| 1164 | msg += 'Specified function should return either list or array.' |
---|
| 1165 | raise msg |
---|
| 1166 | |
---|
| 1167 | #Is this really what we want? |
---|
| 1168 | msg = 'Return vector from function %s ' %f |
---|
| 1169 | msg += 'must have same lenght as input vectors' |
---|
| 1170 | assert len(q) == N, msg |
---|
| 1171 | |
---|
| 1172 | else: |
---|
| 1173 | try: |
---|
| 1174 | f = float(f) |
---|
| 1175 | except: |
---|
| 1176 | msg = 'Force field %s must be either a scalar' %f |
---|
| 1177 | msg += ' or a vector function' |
---|
| 1178 | raise msg |
---|
| 1179 | return f |
---|
[2791] | 1180 | |
---|
| 1181 | class Wind_stress: |
---|
| 1182 | """Apply wind stress to water momentum in terms of |
---|
| 1183 | wind speed [m/s] and wind direction [degrees] |
---|
| 1184 | """ |
---|
| 1185 | |
---|
| 1186 | def __init__(self, *args, **kwargs): |
---|
| 1187 | """Initialise windfield from wind speed s [m/s] |
---|
| 1188 | and wind direction phi [degrees] |
---|
| 1189 | |
---|
| 1190 | Inputs v and phi can be either scalars or Python functions, e.g. |
---|
| 1191 | |
---|
| 1192 | W = Wind_stress(10, 178) |
---|
| 1193 | |
---|
| 1194 | #FIXME - 'normal' degrees are assumed for now, i.e. the |
---|
| 1195 | vector (1,0) has zero degrees. |
---|
| 1196 | We may need to convert from 'compass' degrees later on and also |
---|
| 1197 | map from True north to grid north. |
---|
| 1198 | |
---|
| 1199 | Arguments can also be Python functions of t,x,y as in |
---|
| 1200 | |
---|
| 1201 | def speed(t,x,y): |
---|
| 1202 | ... |
---|
| 1203 | return s |
---|
| 1204 | |
---|
| 1205 | def angle(t,x,y): |
---|
| 1206 | ... |
---|
| 1207 | return phi |
---|
| 1208 | |
---|
| 1209 | where x and y are vectors. |
---|
| 1210 | |
---|
| 1211 | and then pass the functions in |
---|
| 1212 | |
---|
| 1213 | W = Wind_stress(speed, angle) |
---|
| 1214 | |
---|
| 1215 | The instantiated object W can be appended to the list of |
---|
| 1216 | forcing_terms as in |
---|
| 1217 | |
---|
| 1218 | Alternatively, one vector valued function for (speed, angle) |
---|
| 1219 | can be applied, providing both quantities simultaneously. |
---|
| 1220 | As in |
---|
| 1221 | W = Wind_stress(F), where returns (speed, angle) for each t. |
---|
| 1222 | |
---|
| 1223 | domain.forcing_terms.append(W) |
---|
| 1224 | """ |
---|
| 1225 | |
---|
| 1226 | from config import rho_a, rho_w, eta_w |
---|
| 1227 | from Numeric import array, Float |
---|
| 1228 | |
---|
| 1229 | if len(args) == 2: |
---|
| 1230 | s = args[0] |
---|
| 1231 | phi = args[1] |
---|
| 1232 | elif len(args) == 1: |
---|
| 1233 | #Assume vector function returning (s, phi)(t,x,y) |
---|
| 1234 | vector_function = args[0] |
---|
| 1235 | #s = lambda t,x,y: vector_function(t,x=x,y=y)[0] |
---|
| 1236 | #phi = lambda t,x,y: vector_function(t,x=x,y=y)[1] |
---|
| 1237 | s = lambda t,x: vector_function(t,x=x)[0] |
---|
| 1238 | phi = lambda t,x: vector_function(t,x=x)[1] |
---|
| 1239 | else: |
---|
| 1240 | #Assume info is in 2 keyword arguments |
---|
| 1241 | |
---|
| 1242 | if len(kwargs) == 2: |
---|
| 1243 | s = kwargs['s'] |
---|
| 1244 | phi = kwargs['phi'] |
---|
| 1245 | else: |
---|
| 1246 | raise 'Assumes two keyword arguments: s=..., phi=....' |
---|
| 1247 | |
---|
| 1248 | print 'phi', phi |
---|
| 1249 | self.speed = check_forcefield(s) |
---|
| 1250 | self.phi = check_forcefield(phi) |
---|
| 1251 | |
---|
| 1252 | self.const = eta_w*rho_a/rho_w |
---|
| 1253 | |
---|
| 1254 | |
---|
| 1255 | def __call__(self, domain): |
---|
| 1256 | """Evaluate windfield based on values found in domain |
---|
| 1257 | """ |
---|
| 1258 | |
---|
| 1259 | from math import pi, cos, sin, sqrt |
---|
| 1260 | from Numeric import Float, ones, ArrayType |
---|
| 1261 | |
---|
| 1262 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
| 1263 | #ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
| 1264 | |
---|
| 1265 | N = domain.number_of_elements |
---|
| 1266 | t = domain.time |
---|
| 1267 | |
---|
| 1268 | if callable(self.speed): |
---|
| 1269 | xc = domain.get_centroid_coordinates() |
---|
| 1270 | #s_vec = self.speed(t, xc[:,0], xc[:,1]) |
---|
| 1271 | s_vec = self.speed(t, xc) |
---|
| 1272 | else: |
---|
| 1273 | #Assume s is a scalar |
---|
| 1274 | |
---|
| 1275 | try: |
---|
| 1276 | s_vec = self.speed * ones(N, Float) |
---|
| 1277 | except: |
---|
| 1278 | msg = 'Speed must be either callable or a scalar: %s' %self.s |
---|
| 1279 | raise msg |
---|
| 1280 | |
---|
| 1281 | |
---|
| 1282 | if callable(self.phi): |
---|
| 1283 | xc = domain.get_centroid_coordinates() |
---|
| 1284 | #phi_vec = self.phi(t, xc[:,0], xc[:,1]) |
---|
| 1285 | phi_vec = self.phi(t, xc) |
---|
| 1286 | else: |
---|
| 1287 | #Assume phi is a scalar |
---|
| 1288 | |
---|
| 1289 | try: |
---|
| 1290 | phi_vec = self.phi * ones(N, Float) |
---|
| 1291 | except: |
---|
| 1292 | msg = 'Angle must be either callable or a scalar: %s' %self.phi |
---|
| 1293 | raise msg |
---|
| 1294 | |
---|
| 1295 | #assign_windfield_values(xmom_update, ymom_update, |
---|
| 1296 | # s_vec, phi_vec, self.const) |
---|
| 1297 | assign_windfield_values(xmom_update, s_vec, phi_vec, self.const) |
---|
| 1298 | |
---|
| 1299 | |
---|
| 1300 | #def assign_windfield_values(xmom_update, ymom_update, |
---|
| 1301 | # s_vec, phi_vec, const): |
---|
| 1302 | def assign_windfield_values(xmom_update, s_vec, phi_vec, const): |
---|
| 1303 | """Python version of assigning wind field to update vectors. |
---|
| 1304 | A c version also exists (for speed) |
---|
| 1305 | """ |
---|
| 1306 | from math import pi, cos, sin, sqrt |
---|
| 1307 | |
---|
| 1308 | N = len(s_vec) |
---|
| 1309 | for k in range(N): |
---|
| 1310 | s = s_vec[k] |
---|
| 1311 | phi = phi_vec[k] |
---|
| 1312 | |
---|
| 1313 | #Convert to radians |
---|
| 1314 | phi = phi*pi/180 |
---|
| 1315 | |
---|
| 1316 | #Compute velocity vector (u, v) |
---|
| 1317 | u = s*cos(phi) |
---|
| 1318 | v = s*sin(phi) |
---|
| 1319 | |
---|
| 1320 | #Compute wind stress |
---|
| 1321 | #S = const * sqrt(u**2 + v**2) |
---|
| 1322 | S = const * u |
---|
| 1323 | xmom_update[k] += S*u |
---|
| 1324 | #ymom_update[k] += S*v |
---|