1 | import unittest, os |
---|
2 | from math import sqrt, pi |
---|
3 | from shallow_water_1d import * |
---|
4 | from Numeric import allclose, array, zeros, ones, Float, take |
---|
5 | from config import g, epsilon |
---|
6 | |
---|
7 | #Variable windfield implemented using functions |
---|
8 | #def speed(t,x,y): |
---|
9 | def speed(t,x): |
---|
10 | """Large speeds halfway between center and edges |
---|
11 | Low speeds at center and edges |
---|
12 | """ |
---|
13 | |
---|
14 | from math import sqrt, exp, cos, pi |
---|
15 | |
---|
16 | x = array(x) |
---|
17 | #y = array(y) |
---|
18 | |
---|
19 | N = len(x) |
---|
20 | s = 0*x #New array |
---|
21 | |
---|
22 | for k in range(N): |
---|
23 | |
---|
24 | #r = sqrt(x[k]**2 + y[k]**2) |
---|
25 | r = x[k] |
---|
26 | |
---|
27 | factor = exp( -(r-0.15)**2 ) |
---|
28 | |
---|
29 | s[k] = 4000 * factor * (cos(t*2*pi/150) + 2) |
---|
30 | |
---|
31 | return s |
---|
32 | |
---|
33 | |
---|
34 | #def scalar_func(t,x,y): |
---|
35 | def scalar_func(t,x): |
---|
36 | """Function that returns a scalar. |
---|
37 | Used to test error message when Numeric array is expected |
---|
38 | """ |
---|
39 | |
---|
40 | return 17.7 |
---|
41 | |
---|
42 | |
---|
43 | #def angle(t,x,y): |
---|
44 | def angle(t,x): |
---|
45 | """Rotating field |
---|
46 | """ |
---|
47 | from math import sqrt, atan, pi |
---|
48 | |
---|
49 | x = array(x) |
---|
50 | #y = array(y) |
---|
51 | |
---|
52 | N = len(x) |
---|
53 | a = 0*x #New array |
---|
54 | |
---|
55 | for k in range(N): |
---|
56 | #r = sqrt(x[k]**2 + y[k]**2) |
---|
57 | r =x[k] |
---|
58 | |
---|
59 | #angle = atan(y[k]/x[k]) |
---|
60 | angle = atan(1/x[k]) |
---|
61 | |
---|
62 | if x[k] < 0: |
---|
63 | angle+=pi #atan in ]-pi/2; pi/2[ |
---|
64 | |
---|
65 | #Take normal direction |
---|
66 | angle -= pi/2 |
---|
67 | |
---|
68 | #Ensure positive radians |
---|
69 | if angle < 0: |
---|
70 | angle += 2*pi |
---|
71 | |
---|
72 | a[k] = angle/pi*180 |
---|
73 | |
---|
74 | return a |
---|
75 | |
---|
76 | |
---|
77 | class TestCase(unittest.TestCase): |
---|
78 | def setUp(self): |
---|
79 | pass |
---|
80 | |
---|
81 | def tearDown(self): |
---|
82 | pass |
---|
83 | |
---|
84 | def test_flux_zero_case(self): |
---|
85 | #ql = zeros( 3, Float ) |
---|
86 | #qr = zeros( 3, Float ) |
---|
87 | ql = zeros( 2, Float ) |
---|
88 | qr = zeros( 2, Float ) |
---|
89 | |
---|
90 | #normal = zeros( 2, Float ) |
---|
91 | zl = zr = 0. |
---|
92 | flux, max_speed = flux_function(1.0, ql, qr, zl, zr) |
---|
93 | |
---|
94 | #assert allclose(flux, [0,0,0]) |
---|
95 | assert allclose(flux, [0,0]) |
---|
96 | assert max_speed == 0. |
---|
97 | |
---|
98 | def test_flux_constants(self): |
---|
99 | w = 2.0 |
---|
100 | |
---|
101 | #normal = array([1.,0]) |
---|
102 | #ql = array([w, 0, 0]) |
---|
103 | #qr = array([w, 0, 0]) |
---|
104 | ql = array([w, 0]) |
---|
105 | qr = array([w, 0]) |
---|
106 | |
---|
107 | zl = zr = 0. |
---|
108 | h = w - (zl+zr)/2 |
---|
109 | |
---|
110 | #flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
111 | flux, max_speed = flux_function(1.0, ql, qr, zl, zr) |
---|
112 | |
---|
113 | #assert allclose(flux, [0., 0.5*g*h**2, 0.]) |
---|
114 | assert allclose(flux, [0., 0.5*g*h**2]) |
---|
115 | assert max_speed == sqrt(g*h) |
---|
116 | |
---|
117 | def test_flux1(self): |
---|
118 | #Use data from previous version of pyvolution |
---|
119 | #normal = array([1.,0]) |
---|
120 | #ql = array([-0.2, 2, 3]) |
---|
121 | #qr = array([-0.2, 2, 3]) |
---|
122 | ql = array([-0.2, 2]) |
---|
123 | qr = array([-0.2, 2]) |
---|
124 | zl = zr = -0.5 |
---|
125 | #flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
126 | flux, max_speed = flux_function(1.0, ql, qr, zl, zr) |
---|
127 | |
---|
128 | #assert allclose(flux, [2.,13.77433333, 20.]) |
---|
129 | assert allclose(flux, [2.,13.77433333]) |
---|
130 | assert allclose(max_speed, 8.38130948661) |
---|
131 | |
---|
132 | def test_flux2(self): |
---|
133 | #Use data from previous version of pyvolution |
---|
134 | """ |
---|
135 | 2D problem |
---|
136 | normal = array([0., -1.]) |
---|
137 | ql = array([-0.075, 2, 3]) |
---|
138 | qr = array([-0.075, 2, 3]) |
---|
139 | equivlent to solving 1D |
---|
140 | ql = array([-0.075, -3]) |
---|
141 | qr = array([-0.075, -3]) |
---|
142 | with flux not rotated back |
---|
143 | i.e flux = [-3.,30.441]) |
---|
144 | """ |
---|
145 | ql = array([-0.075, -3]) |
---|
146 | qr = array([-0.075, -3]) |
---|
147 | |
---|
148 | zl = zr = -0.375 |
---|
149 | #flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
150 | flux, max_speed = flux_function(1.0, ql, qr, zl, zr) |
---|
151 | #assert allclose(flux, [-3.,-20.0, -30.441]) |
---|
152 | assert allclose(flux, [-3.,30.441]) |
---|
153 | assert allclose(max_speed, 11.7146428199) |
---|
154 | |
---|
155 | |
---|
156 | def test_flux3(self): |
---|
157 | #def test_flux4(self): |
---|
158 | #Use data from previous version of pyvolution |
---|
159 | """ |
---|
160 | change from 3d case with rotation |
---|
161 | normal = array([-sqrt(2)/2, sqrt(2)/2]) |
---|
162 | ql = array([-0.34319278, 0.10254161, 0.07273855]) |
---|
163 | qr = array([-0.30683287, 0.1071986, 0.05930515]) |
---|
164 | to 1d case |
---|
165 | ql = [-0.30683287, -0.03386578] |
---|
166 | qr = [-0.04072675, 0.03883622] |
---|
167 | """ |
---|
168 | ql = array([-0.34319278, -0.02107395]) |
---|
169 | qr = array([-0.30683287, -0.03386578]) |
---|
170 | |
---|
171 | zl = zr = -0.375 |
---|
172 | #flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
173 | flux, max_speed = flux_function(1.0, ql, qr, zl, zr) |
---|
174 | #assert allclose(flux, [-0.04072676, -0.07096636, -0.01604364]) |
---|
175 | assert allclose(flux, [-0.04072676, 0.03883622]) |
---|
176 | assert allclose(max_speed, 1.31414103233) |
---|
177 | |
---|
178 | def test_sw_domain_simple(self): |
---|
179 | #a = [0.0, 0.0] |
---|
180 | #b = [0.0, 2.0] |
---|
181 | #c = [2.0,0.0] |
---|
182 | #d = [0.0, 4.0] |
---|
183 | #e = [2.0, 2.0] |
---|
184 | #f = [4.0,0.0] |
---|
185 | a=0.0 |
---|
186 | b=2.0 |
---|
187 | c=4.0 |
---|
188 | d=6.0 |
---|
189 | e=8.0 |
---|
190 | f=10.0 |
---|
191 | |
---|
192 | points = [a, b, c, d, e, f] |
---|
193 | #bac, bce, ecf, dbe, daf, dae |
---|
194 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
195 | |
---|
196 | #domain = Domain(points, vertices) |
---|
197 | domain = Domain(points) |
---|
198 | domain.check_integrity() |
---|
199 | |
---|
200 | #for name in ['stage', 'xmomentum', 'ymomentum', |
---|
201 | for name in ['stage', 'xmomentum', |
---|
202 | 'elevation', 'friction']: |
---|
203 | assert domain.quantities.has_key(name) |
---|
204 | |
---|
205 | |
---|
206 | #assert domain.get_conserved_quantities(0, edge=1) == 0. |
---|
207 | assert domain.get_conserved_quantities(0, vertex=1) == 0. |
---|
208 | |
---|
209 | def test_boundary_conditions(self): |
---|
210 | |
---|
211 | #a = [0.0, 0.0] |
---|
212 | #b = [0.0, 2.0] |
---|
213 | #c = [2.0,0.0] |
---|
214 | #d = [0.0, 4.0] |
---|
215 | #e = [2.0, 2.0] |
---|
216 | #f = [4.0,0.0] |
---|
217 | a=0.0 |
---|
218 | b=2.0 |
---|
219 | c=4.0 |
---|
220 | d=6.0 |
---|
221 | e=8.0 |
---|
222 | f=10.0 |
---|
223 | |
---|
224 | points = [a, b, c, d, e, f] |
---|
225 | #bac, bce, ecf, dbe |
---|
226 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
227 | #boundary = { (0, 0): 'Third', |
---|
228 | # (0, 2): 'First', |
---|
229 | # (2, 0): 'Second', |
---|
230 | # (2, 1): 'Second', |
---|
231 | # (3, 1): 'Second', |
---|
232 | # (3, 2): 'Third'} |
---|
233 | |
---|
234 | #there are points -1 segements with edges (0,1) = (left, right) |
---|
235 | boundary = {(0,0): 'Start', (4,1): 'Finish'} |
---|
236 | #boundary = {(0,0): 'exterior', (4,1): 'exterior'} |
---|
237 | #domain = Domain(points, vertices, boundary) |
---|
238 | domain = Domain(points, boundary) |
---|
239 | domain.check_integrity() |
---|
240 | |
---|
241 | #Sets stages in each interval(element) |
---|
242 | #domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
243 | # [0,0,9], [-6, 3, 3]]) |
---|
244 | domain.set_quantity('stage', [[1,2], [5,5], |
---|
245 | [0,0], [-6,3], [3,0]]) |
---|
246 | |
---|
247 | #domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
248 | # [3,3,3], [4, 4, 4]]) |
---|
249 | domain.set_quantity('xmomentum', [[1,1], [2,2], |
---|
250 | [3,3], [4, 4], [5,5]]) |
---|
251 | |
---|
252 | #domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
253 | # [30,30,30], [40, 40, 40]]) |
---|
254 | |
---|
255 | #D = Dirichlet_boundary([5,2,1]) |
---|
256 | #T = Transmissive_boundary(domain) |
---|
257 | R = Reflective_boundary(domain) |
---|
258 | domain.set_boundary( {'Start': R, 'Finish': R}) |
---|
259 | #domain.set_boundary( {'exterior': R, 'exterior': R}) |
---|
260 | |
---|
261 | domain.update_boundary() |
---|
262 | |
---|
263 | #Stage |
---|
264 | #assert domain.quantities['stage'].boundary_values[0] == 2.5 |
---|
265 | assert domain.quantities['stage'].boundary_values[0] ==\ |
---|
266 | domain.get_conserved_quantities(0, vertex=0)[0] #Reflective (2.5) |
---|
267 | #assert domain.quantities['stage'].boundary_values[1] == 5. #Dirichlet |
---|
268 | #assert domain.quantities['stage'].boundary_values[2] ==\ |
---|
269 | # domain.get_conserved_quantities(2, edge=0)[0] #Transmissive (4.5) |
---|
270 | #assert domain.quantities['stage'].boundary_values[3] ==\ |
---|
271 | # domain.get_conserved_quantities(2, edge=1)[0] #Transmissive (4.5) |
---|
272 | #assert domain.quantities['stage'].boundary_values[4] ==\ |
---|
273 | # domain.get_conserved_quantities(3, edge=1)[0] #Transmissive (-1.5) |
---|
274 | #assert domain.quantities['stage'].boundary_values[5] ==\ |
---|
275 | # domain.get_conserved_quantities(3, edge=2)[0] #Reflective (-1.5) |
---|
276 | |
---|
277 | #Xmomentum |
---|
278 | #print 'xmom' |
---|
279 | print domain.quantities['xmomentum'].boundary_values[0] |
---|
280 | assert domain.quantities['xmomentum'].boundary_values[0] == 1.0 #Reflective |
---|
281 | |
---|
282 | #SHOULDN'T THIS BE -1.0 |
---|
283 | |
---|
284 | #assert domain.quantities['xmomentum'].boundary_values[1] == 2. #Dirichlet |
---|
285 | #assert domain.quantities['xmomentum'].boundary_values[2] ==\ |
---|
286 | # domain.get_conserved_quantities(2, edge=0)[1] #Transmissive |
---|
287 | #assert domain.quantities['xmomentum'].boundary_values[3] ==\ |
---|
288 | # domain.get_conserved_quantities(2, edge=1)[1] #Transmissive |
---|
289 | #assert domain.quantities['xmomentum'].boundary_values[4] ==\ |
---|
290 | # domain.get_conserved_quantities(3, edge=1)[1] #Transmissive |
---|
291 | assert domain.quantities['xmomentum'].boundary_values[1] == -5.0 #Reflective |
---|
292 | |
---|
293 | def test_boundary_conditionsII(self): |
---|
294 | |
---|
295 | #a = [0.0, 0.0] |
---|
296 | #b = [0.0, 2.0] |
---|
297 | #c = [2.0,0.0] |
---|
298 | #d = [0.0, 4.0] |
---|
299 | #e = [2.0, 2.0] |
---|
300 | #f = [4.0,0.0] |
---|
301 | a=0.0 |
---|
302 | b=2.0 |
---|
303 | c=4.0 |
---|
304 | d=6.0 |
---|
305 | e=8.0 |
---|
306 | f=10.0 |
---|
307 | |
---|
308 | points = [a, b, c, d, e, f] |
---|
309 | #bac, bce, ecf, dbe |
---|
310 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
311 | #boundary = { (0, 0): 'Third', |
---|
312 | # (0, 2): 'First', |
---|
313 | # (2, 0): 'Second', |
---|
314 | # (2, 1): 'Second', |
---|
315 | # (3, 1): 'Second', |
---|
316 | # (3, 2): 'Third', |
---|
317 | # (0, 1): 'Internal'} |
---|
318 | |
---|
319 | |
---|
320 | boundary = {(0,0): 'Start', (1,0) : 'Internal', (4,1): 'Finish'} |
---|
321 | #domain = Domain(points, vertices, boundary) |
---|
322 | domain = Domain(points, boundary) |
---|
323 | domain.check_integrity() |
---|
324 | |
---|
325 | |
---|
326 | #domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
327 | # [0,0,9], [-6, 3, 3]]) |
---|
328 | |
---|
329 | #domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
330 | # [3,3,3], [4, 4, 4]]) |
---|
331 | |
---|
332 | #domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
333 | # [30,30,30], [40, 40, 40]]) |
---|
334 | |
---|
335 | domain.set_quantity('stage', [[1,2], [5,5], |
---|
336 | [0,0], [-6, 3], [3, 0]]) |
---|
337 | |
---|
338 | domain.set_quantity('xmomentum', [[1,1], [2,2], |
---|
339 | [3,3], [4, 4], [5, 5]]) |
---|
340 | |
---|
341 | |
---|
342 | |
---|
343 | #D = Dirichlet_boundary([5,2,1]) |
---|
344 | #T = Transmissive_boundary(domain) |
---|
345 | R = Reflective_boundary(domain) |
---|
346 | domain.set_boundary( {'Start': R, 'Finish': R, 'Internal': None}) |
---|
347 | |
---|
348 | domain.update_boundary() |
---|
349 | domain.check_integrity() |
---|
350 | |
---|
351 | def test_compute_fluxes0(self): |
---|
352 | #Do a full triangle and check that fluxes cancel out for |
---|
353 | #the constant stage case |
---|
354 | |
---|
355 | print 'check min time step in compute fluxes is ok, John' |
---|
356 | |
---|
357 | #a = [0.0, 0.0] |
---|
358 | #b = [0.0, 2.0] |
---|
359 | #c = [2.0,0.0] |
---|
360 | #d = [0.0, 4.0] |
---|
361 | #e = [2.0, 2.0] |
---|
362 | #f = [4.0,0.0] |
---|
363 | a=0.0 |
---|
364 | b=2.0 |
---|
365 | c=4.0 |
---|
366 | d=6.0 |
---|
367 | e=8.0 |
---|
368 | f=10.0 |
---|
369 | |
---|
370 | points = [a, b, c, d, e, f] |
---|
371 | #bac, bce, ecf, dbe |
---|
372 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
373 | |
---|
374 | domain = Domain(points) |
---|
375 | #domain.set_quantity('stage', [[2,2,2], [2,2,2], |
---|
376 | # [2,2,2], [2,2,2]]) |
---|
377 | domain.set_quantity('stage', [[2,2], [2,2], [2,2], [2,2], [2,2]]) |
---|
378 | domain.check_integrity() |
---|
379 | |
---|
380 | #assert allclose(domain.neighbours, [[-1,1,-1], [2,3,0], [-1,-1,1],[1,-1,-1]]) |
---|
381 | assert allclose(domain.neighbours, [[-1,1], [0,2], [1,3],[2,4], [3,-1]]) |
---|
382 | #assert allclose(domain.neighbour_edges, [[-1,2,-1], [2,0,1], [-1,-1,0],[1,-1,-1]]) |
---|
383 | #assert allclose(domain.neighbour_edges, [[-1,0], [1,0], [1,0], [1,0], [1,-1]]) |
---|
384 | assert allclose(domain.neighbour_vertices, [[-1,0], [1,0], [1,0], [1,0], [1,-1]]) |
---|
385 | |
---|
386 | zl=zr=0. #Assume flat bed |
---|
387 | |
---|
388 | #Flux across right edge of volume 1 |
---|
389 | #normal = domain.get_normal(1,0) |
---|
390 | #ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
391 | #qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
392 | #flux0, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
393 | |
---|
394 | #Flux across right edge of element 1 |
---|
395 | ql = domain.get_conserved_quantities(vol_id=1, vertex=1) |
---|
396 | qr = domain.get_conserved_quantities(vol_id=2, vertex=0) |
---|
397 | #print 'qr and ql 1' |
---|
398 | #print qr |
---|
399 | #print ql |
---|
400 | flux0, max_speed = flux_function(1.0, ql, qr, zl, zr) |
---|
401 | |
---|
402 | #Check that flux seen from other triangles is inverse |
---|
403 | tmp = qr; qr=ql; ql=tmp |
---|
404 | #print 'qr and ql 2' |
---|
405 | #print qr |
---|
406 | #print ql |
---|
407 | #normal = domain.get_normal(2,2) |
---|
408 | #flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
409 | flux, max_speed = flux_function(-1.0, ql, qr, zl, zr) |
---|
410 | #print 'fluxes' |
---|
411 | #print flux0 |
---|
412 | #print flux |
---|
413 | assert allclose(flux + flux0, 0.) |
---|
414 | |
---|
415 | #Flux across upper edge of volume 1 |
---|
416 | #normal = domain.get_normal(1,1) |
---|
417 | #ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
418 | #qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
419 | #flux1, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
420 | |
---|
421 | #Flux across left edge of element 1 |
---|
422 | #ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
423 | #qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
424 | ql = domain.get_conserved_quantities(vol_id=1, vertex=0) |
---|
425 | qr = domain.get_conserved_quantities(vol_id=0, vertex=1) |
---|
426 | flux1, max_speed = flux_function(-1.0, ql, qr, zl, zr) |
---|
427 | |
---|
428 | #Check that flux seen from other triangles is inverse |
---|
429 | tmp = qr; qr=ql; ql=tmp |
---|
430 | #normal = domain.get_normal(3,0) |
---|
431 | #flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
432 | flux, max_speed = flux_function(1.0, ql, qr, zl, zr) |
---|
433 | assert allclose(flux + flux1, 0.) |
---|
434 | |
---|
435 | #Flux across lower left hypotenuse of volume 1 |
---|
436 | #normal = domain.get_normal(1,2) |
---|
437 | #ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
438 | #qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
439 | #flux2, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
440 | |
---|
441 | #Check that flux seen from other triangles is inverse |
---|
442 | #tmp = qr; qr=ql; ql=tmp |
---|
443 | #normal = domain.get_normal(0,1) |
---|
444 | #flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
445 | #assert allclose(flux + flux2, 0.) |
---|
446 | |
---|
447 | |
---|
448 | #Scale by edgelengths, add up anc check that total flux is zero |
---|
449 | #e0 = domain.edgelengths[1, 0] |
---|
450 | #e1 = domain.edgelengths[1, 1] |
---|
451 | #e2 = domain.edgelengths[1, 2] |
---|
452 | |
---|
453 | #assert allclose(e0*flux0+e1*flux1+e2*flux2, 0.) |
---|
454 | print 'flux0',flux0 |
---|
455 | print 'flux1',flux1 |
---|
456 | assert allclose(flux0+flux1, 0.) |
---|
457 | |
---|
458 | #Now check that compute_flux yields zeros as well |
---|
459 | domain.compute_fluxes() |
---|
460 | |
---|
461 | #for name in ['stage', 'xmomentum', 'ymomentum']: |
---|
462 | for name in ['stage', 'xmomentum']: |
---|
463 | #print name, domain.quantities[name].explicit_update |
---|
464 | assert allclose(domain.quantities[name].explicit_update[1], 0) |
---|
465 | |
---|
466 | def test_compute_fluxes1(self): |
---|
467 | #Use values from previous version |
---|
468 | print "test compute fluxes 1" |
---|
469 | |
---|
470 | a=0.0 |
---|
471 | b=2.0 |
---|
472 | c=4.0 |
---|
473 | d=6.0 |
---|
474 | e=8.0 |
---|
475 | |
---|
476 | points = [a, b, c, d, e] |
---|
477 | |
---|
478 | domain = Domain(points) |
---|
479 | |
---|
480 | val0 = 2.+2.0/3 |
---|
481 | val1 = 4.+4.0/3 |
---|
482 | val2 = 8.+2.0/3 |
---|
483 | val3 = 2.+8.0/3 |
---|
484 | |
---|
485 | domain.set_quantity('stage', [[val3, val3], [val1, val1], |
---|
486 | [val2, val2], [val0, val0]]) |
---|
487 | stage = domain.get_quantity('stage') |
---|
488 | print stage |
---|
489 | domain.check_integrity() |
---|
490 | |
---|
491 | zl=zr=0. #Assume flat bed |
---|
492 | |
---|
493 | #Flux across right edge of volume 1 |
---|
494 | ql = domain.get_conserved_quantities(vol_id=1, vertex=1) |
---|
495 | qr = domain.get_conserved_quantities(vol_id=2, vertex=0) |
---|
496 | print 'ql',ql |
---|
497 | print 'qr',qr |
---|
498 | flux0, max_speed = flux_function(1.0, ql, qr, zl, zr) |
---|
499 | print 'flux0',flux0 |
---|
500 | print 'max_speed', max_speed |
---|
501 | |
---|
502 | #Check that flux seen from other triangles is inverse |
---|
503 | flux, max_speed = flux_function(-1.0, qr, ql, zl, zr) |
---|
504 | print flux0 |
---|
505 | print flux |
---|
506 | assert allclose(flux + flux0, 0.) |
---|
507 | |
---|
508 | assert allclose(flux0, [-15.3598804, 253.71111111]) |
---|
509 | assert allclose(max_speed, 9.21592824046) |
---|
510 | |
---|
511 | |
---|
512 | #Flux across left edge of volume 1 |
---|
513 | ql = domain.get_conserved_quantities(vol_id=1, vertex=0) |
---|
514 | qr = domain.get_conserved_quantities(vol_id=0, vertex=1) |
---|
515 | flux1, max_speed = flux_function(-1.0, ql, qr, zl, zr) |
---|
516 | print 'flux1', flux1 |
---|
517 | assert allclose(flux1, [2.4098563, -123.04444444]) |
---|
518 | assert allclose(max_speed, 7.22956891292) |
---|
519 | |
---|
520 | #Add up and check that compute_fluxes is correct for vol 1 |
---|
521 | total_flux = -(flux0+flux1)/domain.areas[1] |
---|
522 | print 'total flux', total_flux |
---|
523 | print 'domain area',domain.areas[1] |
---|
524 | assert allclose(total_flux, [6.47501205, -65.333333333]) |
---|
525 | |
---|
526 | domain.compute_fluxes() |
---|
527 | |
---|
528 | for i, name in enumerate(['stage', 'xmomentum']): |
---|
529 | assert allclose(total_flux[i], |
---|
530 | domain.quantities[name].explicit_update[1]) |
---|
531 | |
---|
532 | #assert allclose(domain.explicit_update, [ |
---|
533 | # [0., -69.68888889, -69.68888889], |
---|
534 | # [-0.68218178, -166.6, -35.93333333], |
---|
535 | # [-111.77316251, 69.68888889, 0.], |
---|
536 | # [-35.68522449, 0., 69.68888889]]) |
---|
537 | |
---|
538 | print domain.quantities['stage'].explicit_update |
---|
539 | print domain.quantities['xmomentum'].explicit_update |
---|
540 | assert allclose(domain.quantities['stage'].explicit_update, |
---|
541 | [0., 6.47501205, -111.77316251, -35.68522449]) |
---|
542 | assert allclose(domain.quantities['xmomentum'].explicit_update, |
---|
543 | [-69.68888889, -65.33333333, 69.68888889, 0]) |
---|
544 | assert allclose(domain.quantities['ymomentum'].explicit_update, |
---|
545 | [-69.68888889, -35.93333333, 0., 69.68888889]) |
---|
546 | |
---|
547 | |
---|
548 | #assert allclose(domain.quantities[name].explicit_update |
---|
549 | |
---|
550 | def test_catching_negative_heights(self): |
---|
551 | |
---|
552 | a=0.0 |
---|
553 | b=2.0 |
---|
554 | c=4.0 |
---|
555 | d=6.0 |
---|
556 | e=8.0 |
---|
557 | |
---|
558 | points = [a, b, c, d, e] |
---|
559 | domain = Domain(points) |
---|
560 | val0 = 2.+2.0/3 |
---|
561 | val1 = 4.+4.0/3 |
---|
562 | val2 = 8.+2.0/3 |
---|
563 | val3 = 2.+8.0/3 |
---|
564 | |
---|
565 | zl=zr=4 #Too large |
---|
566 | domain.set_quantity('elevation', zl*ones( (4,2) )) |
---|
567 | domain.set_quantity('stage', [[val0, val0-1], |
---|
568 | [val1, val1+1], |
---|
569 | [val2, val2-2], |
---|
570 | [val3-0.5, val3]]) |
---|
571 | |
---|
572 | #Should fail |
---|
573 | try: |
---|
574 | domain.check_integrity() |
---|
575 | except: |
---|
576 | pass |
---|
577 | |
---|
578 | def test_initial_condition(self): |
---|
579 | """Test that initial condition is output at time == 0 |
---|
580 | """ |
---|
581 | |
---|
582 | from config import g |
---|
583 | import copy |
---|
584 | |
---|
585 | #a = [0.0, 0.0] |
---|
586 | #b = [0.0, 2.0] |
---|
587 | #c = [2.0, 0.0] |
---|
588 | #d = [0.0, 4.0] |
---|
589 | #e = [2.0, 2.0] |
---|
590 | #f = [4.0, 0.0] |
---|
591 | a=0.0 |
---|
592 | b=2.0 |
---|
593 | c=4.0 |
---|
594 | d=6.0 |
---|
595 | e=8.0 |
---|
596 | #f=10.0 |
---|
597 | |
---|
598 | #points = [a, b, c, d, e, f] |
---|
599 | points = [a, b, c, d, e] |
---|
600 | #bac, bce, ecf, dbe |
---|
601 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
602 | |
---|
603 | #domain = Domain(points, vertices) |
---|
604 | domain = Domain(points) |
---|
605 | |
---|
606 | #Set up for a gradient of (3,0) at mid triangle |
---|
607 | #def slope(x, y): |
---|
608 | # return 3*x |
---|
609 | def slope(x): |
---|
610 | return 3*x |
---|
611 | |
---|
612 | h = 0.1 |
---|
613 | #def stage(x,y): |
---|
614 | # return slope(x,y)+h |
---|
615 | def stage(x): |
---|
616 | return slope(x)+h |
---|
617 | |
---|
618 | domain.set_quantity('elevation', slope) |
---|
619 | domain.set_quantity('stage', stage) |
---|
620 | |
---|
621 | initial_stage = copy.copy(domain.quantities['stage'].vertex_values) |
---|
622 | |
---|
623 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
624 | |
---|
625 | #Evolution |
---|
626 | for t in domain.evolve(yieldstep = 1.0, finaltime = 2.0): |
---|
627 | stage = domain.quantities['stage'].vertex_values |
---|
628 | |
---|
629 | if t == 0.0: |
---|
630 | assert allclose(stage, initial_stage) |
---|
631 | else: |
---|
632 | assert not allclose(stage, initial_stage) |
---|
633 | |
---|
634 | os.remove(domain.get_name() + '.sww') |
---|
635 | |
---|
636 | ##################################################### |
---|
637 | def test_gravity(self): |
---|
638 | #Assuming no friction |
---|
639 | |
---|
640 | from config import g |
---|
641 | a=0.0 |
---|
642 | b=2.0 |
---|
643 | c=4.0 |
---|
644 | d=6.0 |
---|
645 | e=8.0 |
---|
646 | |
---|
647 | points = [a, b, c, d, e] |
---|
648 | |
---|
649 | domain = Domain(points) |
---|
650 | |
---|
651 | def slope(x): |
---|
652 | return 3*x |
---|
653 | |
---|
654 | h = 0.1 |
---|
655 | #def stage(x,y): |
---|
656 | # return slope(x,y)+h |
---|
657 | def stage(x): |
---|
658 | return slope(x)+h |
---|
659 | |
---|
660 | |
---|
661 | domain.set_quantity('elevation', slope) |
---|
662 | domain.set_quantity('stage', stage) |
---|
663 | |
---|
664 | for name in domain.conserved_quantities: |
---|
665 | assert allclose(domain.quantities[name].explicit_update, 0) |
---|
666 | assert allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
667 | |
---|
668 | domain.compute_forcing_terms() |
---|
669 | |
---|
670 | assert allclose(domain.quantities['stage'].explicit_update, 0) |
---|
671 | assert allclose(domain.quantities['xmomentum'].explicit_update, -g*h*3) |
---|
672 | #assert allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
673 | |
---|
674 | |
---|
675 | def test_manning_friction(self): |
---|
676 | from config import g |
---|
677 | |
---|
678 | a=0.0 |
---|
679 | b=2.0 |
---|
680 | c=4.0 |
---|
681 | d=6.0 |
---|
682 | e=8.0 |
---|
683 | |
---|
684 | points = [a, b, c, d, e] |
---|
685 | |
---|
686 | domain = Domain(points) |
---|
687 | |
---|
688 | #Set up for a gradient of (3,0) at mid triangle |
---|
689 | def slope(x): |
---|
690 | return 3*x |
---|
691 | |
---|
692 | h = 0.1 |
---|
693 | #def stage(x,y): |
---|
694 | # return slope(x,y)+h |
---|
695 | def stage(x): |
---|
696 | return slope(x)+h |
---|
697 | |
---|
698 | eta = 0.07 |
---|
699 | domain.set_quantity('elevation', slope) |
---|
700 | domain.set_quantity('stage', stage) |
---|
701 | domain.set_quantity('friction', eta) |
---|
702 | |
---|
703 | for name in domain.conserved_quantities: |
---|
704 | assert allclose(domain.quantities[name].explicit_update, 0) |
---|
705 | assert allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
706 | |
---|
707 | domain.compute_forcing_terms() |
---|
708 | |
---|
709 | assert allclose(domain.quantities['stage'].explicit_update, 0) |
---|
710 | assert allclose(domain.quantities['xmomentum'].explicit_update, -g*h*3) |
---|
711 | #assert allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
712 | |
---|
713 | assert allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
714 | assert allclose(domain.quantities['xmomentum'].semi_implicit_update, 0) |
---|
715 | #assert allclose(domain.quantities['ymomentum'].semi_implicit_update, 0) |
---|
716 | |
---|
717 | #Create some momentum for friction to work with |
---|
718 | domain.set_quantity('xmomentum', 1) |
---|
719 | S = -g * eta**2 / h**(7.0/3) |
---|
720 | |
---|
721 | domain.compute_forcing_terms() |
---|
722 | assert allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
723 | assert allclose(domain.quantities['xmomentum'].semi_implicit_update, S) |
---|
724 | #assert allclose(domain.quantities['ymomentum'].semi_implicit_update, 0) |
---|
725 | |
---|
726 | #A more complex example |
---|
727 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
728 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
729 | #domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
730 | |
---|
731 | #domain.set_quantity('xmomentum', 3) |
---|
732 | domain.set_quantity('xmomentum', 5) |
---|
733 | #domain.set_quantity('ymomentum', 4) |
---|
734 | |
---|
735 | S = -g * eta**2 * 5 / h**(7.0/3) |
---|
736 | #S = -g * eta**2 / h**(7.0/3) |
---|
737 | |
---|
738 | |
---|
739 | domain.compute_forcing_terms() |
---|
740 | |
---|
741 | assert allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
742 | print '5*S', 5*S |
---|
743 | #CHECK THIS TEST |
---|
744 | print domain.quantities['xmomentum'].semi_implicit_update |
---|
745 | #assert allclose(domain.quantities['xmomentum'].semi_implicit_update, 3*S) |
---|
746 | assert allclose(domain.quantities['xmomentum'].semi_implicit_update, 5*S) |
---|
747 | #assert allclose(domain.quantities['ymomentum'].semi_implicit_update, 4*S) |
---|
748 | |
---|
749 | def test_constant_wind_stress(self): |
---|
750 | from config import rho_a, rho_w, eta_w |
---|
751 | from math import pi, cos, sin, sqrt |
---|
752 | |
---|
753 | |
---|
754 | #a = [0.0, 0.0] |
---|
755 | #b = [0.0, 2.0] |
---|
756 | #c = [2.0, 0.0] |
---|
757 | #d = [0.0, 4.0] |
---|
758 | #e = [2.0, 2.0] |
---|
759 | #f = [4.0, 0.0] |
---|
760 | a=0.0 |
---|
761 | b=2.0 |
---|
762 | c=4.0 |
---|
763 | d=6.0 |
---|
764 | e=8.0 |
---|
765 | #f=10.0 |
---|
766 | |
---|
767 | #points = [a, b, c, d, e, f] |
---|
768 | points = [a, b, c, d, e] |
---|
769 | #bac, bce, ecf, dbe |
---|
770 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
771 | |
---|
772 | #domain = Domain(points, vertices) |
---|
773 | domain = Domain(points) |
---|
774 | |
---|
775 | #Flat surface with 1m of water |
---|
776 | domain.set_quantity('elevation', 0) |
---|
777 | domain.set_quantity('stage', 1.0) |
---|
778 | domain.set_quantity('friction', 0) |
---|
779 | |
---|
780 | Br = Reflective_boundary(domain) |
---|
781 | domain.set_boundary({'exterior': Br}) |
---|
782 | |
---|
783 | #Setup only one forcing term, constant wind stress |
---|
784 | s = 100 |
---|
785 | phi = 135 |
---|
786 | domain.forcing_terms = [] |
---|
787 | domain.forcing_terms.append( Wind_stress(s, phi) ) |
---|
788 | |
---|
789 | domain.compute_forcing_terms() |
---|
790 | |
---|
791 | |
---|
792 | const = eta_w*rho_a/rho_w |
---|
793 | |
---|
794 | #Convert to radians |
---|
795 | phi = phi*pi/180 |
---|
796 | |
---|
797 | #Compute velocity vector (u, v) |
---|
798 | u = s*cos(phi) |
---|
799 | #v = s*sin(phi) |
---|
800 | |
---|
801 | #Compute wind stress |
---|
802 | #S = const * sqrt(u**2 + v**2) |
---|
803 | S = const * u |
---|
804 | |
---|
805 | |
---|
806 | assert allclose(domain.quantities['stage'].explicit_update, 0) |
---|
807 | assert allclose(domain.quantities['xmomentum'].explicit_update, S*u) |
---|
808 | #assert allclose(domain.quantities['ymomentum'].explicit_update, S*v) |
---|
809 | |
---|
810 | |
---|
811 | def test_variable_wind_stress(self): |
---|
812 | from config import rho_a, rho_w, eta_w |
---|
813 | from math import pi, cos, sin, sqrt |
---|
814 | |
---|
815 | #a = [0.0, 0.0] |
---|
816 | #b = [0.0, 2.0] |
---|
817 | #c = [2.0, 0.0] |
---|
818 | #d = [0.0, 4.0] |
---|
819 | #e = [2.0, 2.0] |
---|
820 | #f = [4.0, 0.0] |
---|
821 | a=0.0 |
---|
822 | b=2.0 |
---|
823 | c=4.0 |
---|
824 | d=6.0 |
---|
825 | e=8.0 |
---|
826 | #f=10.0 |
---|
827 | |
---|
828 | #points = [a, b, c, d, e, f] |
---|
829 | points = [a, b, c, d, e] |
---|
830 | #bac, bce, ecf, dbe |
---|
831 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
832 | |
---|
833 | #domain = Domain(points, vertices) |
---|
834 | domain = Domain(points) |
---|
835 | |
---|
836 | #Flat surface with 1m of water |
---|
837 | domain.set_quantity('elevation', 0) |
---|
838 | domain.set_quantity('stage', 1.0) |
---|
839 | domain.set_quantity('friction', 0) |
---|
840 | |
---|
841 | Br = Reflective_boundary(domain) |
---|
842 | domain.set_boundary({'exterior': Br}) |
---|
843 | |
---|
844 | domain.time = 5.54 #Take a random time (not zero) |
---|
845 | |
---|
846 | #Setup only one forcing term, constant wind stress |
---|
847 | s = 100 |
---|
848 | phi = 135 |
---|
849 | domain.forcing_terms = [] |
---|
850 | domain.forcing_terms.append( Wind_stress(s = speed, phi = angle) ) |
---|
851 | |
---|
852 | domain.compute_forcing_terms() |
---|
853 | |
---|
854 | #Compute reference solution |
---|
855 | const = eta_w*rho_a/rho_w |
---|
856 | |
---|
857 | N = domain.number_of_elements |
---|
858 | |
---|
859 | xc = domain.get_centroid_coordinates() |
---|
860 | t = domain.time |
---|
861 | |
---|
862 | #x = xc[:,0] |
---|
863 | #y = xc[:,1] |
---|
864 | x = xc |
---|
865 | |
---|
866 | #s_vec = speed(t,x,y) |
---|
867 | #phi_vec = angle(t,x,y) |
---|
868 | s_vec = speed(t,x) |
---|
869 | phi_vec = angle(t,x) |
---|
870 | |
---|
871 | |
---|
872 | for k in range(N): |
---|
873 | #Convert to radians |
---|
874 | phi = phi_vec[k]*pi/180 |
---|
875 | s = s_vec[k] |
---|
876 | |
---|
877 | #Compute velocity vector (u, v) |
---|
878 | u = s*cos(phi) |
---|
879 | #v = s*sin(phi) |
---|
880 | |
---|
881 | #Compute wind stress |
---|
882 | #S = const * sqrt(u**2 + v**2) |
---|
883 | S = const*u |
---|
884 | |
---|
885 | assert allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
886 | assert allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
887 | #assert allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
888 | |
---|
889 | def test_first_order_extrapolator_const_z(self): |
---|
890 | |
---|
891 | #a = [0.0, 0.0] |
---|
892 | #b = [0.0, 2.0] |
---|
893 | #c = [2.0, 0.0] |
---|
894 | #d = [0.0, 4.0] |
---|
895 | #e = [2.0, 2.0] |
---|
896 | #f = [4.0, 0.0] |
---|
897 | a=0.0 |
---|
898 | b=2.0 |
---|
899 | c=4.0 |
---|
900 | d=6.0 |
---|
901 | e=8.0 |
---|
902 | #f=10.0 |
---|
903 | |
---|
904 | #points = [a, b, c, d, e, f] |
---|
905 | points = [a, b, c, d, e] |
---|
906 | #bac, bce, ecf, dbe |
---|
907 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
908 | |
---|
909 | #domain = Domain(points, vertices) |
---|
910 | domain = Domain(points) |
---|
911 | |
---|
912 | val0 = 2.+2.0/3 |
---|
913 | val1 = 4.+4.0/3 |
---|
914 | val2 = 8.+2.0/3 |
---|
915 | val3 = 2.+8.0/3 |
---|
916 | |
---|
917 | zl=zr=-3.75 #Assume constant bed (must be less than stage) |
---|
918 | #domain.set_quantity('elevation', zl*ones( (4,3) )) |
---|
919 | domain.set_quantity('elevation', zl*ones( (4,2) )) |
---|
920 | #domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
921 | # [val1, val1+1, val1], |
---|
922 | # [val2, val2-2, val2], |
---|
923 | # [val3-0.5, val3, val3]]) |
---|
924 | domain.set_quantity('stage', [[val0, val0-1], |
---|
925 | [val1, val1+1], |
---|
926 | [val2, val2-2], |
---|
927 | [val3-0.5, val3]]) |
---|
928 | |
---|
929 | domain.order = 1 |
---|
930 | domain.distribute_to_vertices_and_edges() |
---|
931 | |
---|
932 | #Check that centroid values were distributed to vertices |
---|
933 | C = domain.quantities['stage'].centroid_values |
---|
934 | #for i in range(3): |
---|
935 | for i in range(2): |
---|
936 | assert allclose( domain.quantities['stage'].vertex_values[:,i], C) |
---|
937 | |
---|
938 | |
---|
939 | def test_first_order_limiter_variable_z(self): |
---|
940 | #Check that first order limiter follows bed_slope |
---|
941 | from Numeric import alltrue, greater_equal |
---|
942 | from config import epsilon |
---|
943 | |
---|
944 | #a = [0.0, 0.0] |
---|
945 | #b = [0.0, 2.0] |
---|
946 | #c = [2.0,0.0] |
---|
947 | #d = [0.0, 4.0] |
---|
948 | #e = [2.0, 2.0] |
---|
949 | #f = [4.0,0.0] |
---|
950 | a=0.0 |
---|
951 | b=2.0 |
---|
952 | c=4.0 |
---|
953 | d=6.0 |
---|
954 | e=8.0 |
---|
955 | #f=10.0 |
---|
956 | |
---|
957 | #points = [a, b, c, d, e, f] |
---|
958 | points = [a, b, c, d, e] |
---|
959 | #bac, bce, ecf, dbe |
---|
960 | #vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
961 | |
---|
962 | #domain = Domain(points, vertices) |
---|
963 | domain = Domain(points) |
---|
964 | |
---|
965 | val0 = 2.+2.0/3 |
---|
966 | val1 = 4.+4.0/3 |
---|
967 | val2 = 8.+2.0/3 |
---|
968 | val3 = 2.+8.0/3 |
---|
969 | |
---|
970 | #domain.set_quantity('elevation', [[0,0,0], [6,0,0], |
---|
971 | # [6,6,6], [6,6,6]]) |
---|
972 | #domain.set_quantity('stage', [[val0, val0, val0], |
---|
973 | # [val1, val1, val1], |
---|
974 | # [val2, val2, val2], |
---|
975 | # [val3, val3, val3]]) |
---|
976 | domain.set_quantity('elevation', [[0,0], [6,0], |
---|
977 | [6,6], [6,6]]) |
---|
978 | domain.set_quantity('stage', [[val0, val0], |
---|
979 | [val1, val1], |
---|
980 | [val2, val2], |
---|
981 | [val3, val3]]) |
---|
982 | |
---|
983 | E = domain.quantities['elevation'].vertex_values |
---|
984 | L = domain.quantities['stage'].vertex_values |
---|
985 | |
---|
986 | |
---|
987 | #Check that some stages are not above elevation (within eps) |
---|
988 | #- so that the limiter has something to work with |
---|
989 | assert not alltrue(alltrue(greater_equal(L,E-epsilon))) |
---|
990 | |
---|
991 | domain.order = 1 |
---|
992 | domain.distribute_to_vertices_and_edges() |
---|
993 | |
---|
994 | #Check that all stages are above elevation (within eps) |
---|
995 | assert alltrue(alltrue(greater_equal(L,E-epsilon))) |
---|
996 | |
---|
997 | |
---|
998 | ##################################################### |
---|
999 | def test_distribute_basic(self): |
---|
1000 | #Using test data generated by pyvolution-2 |
---|
1001 | #Assuming no friction and flat bed (0.0) |
---|
1002 | print "\ntest distriute basic" |
---|
1003 | |
---|
1004 | a=0.0 |
---|
1005 | b=2.0 |
---|
1006 | c=4.0 |
---|
1007 | d=6.0 |
---|
1008 | e=8.0 |
---|
1009 | |
---|
1010 | points = [a, b, c, d, e] |
---|
1011 | domain = Domain(points) |
---|
1012 | |
---|
1013 | val0 = 2. |
---|
1014 | val1 = 4. |
---|
1015 | val2 = 8. |
---|
1016 | val3 = 2. |
---|
1017 | |
---|
1018 | domain.set_quantity('stage', [val0, val1, val2, val3], |
---|
1019 | location='centroids') |
---|
1020 | L = domain.quantities['stage'].vertex_values |
---|
1021 | |
---|
1022 | #First order |
---|
1023 | domain.order = 1 |
---|
1024 | domain.distribute_to_vertices_and_edges() |
---|
1025 | print "First order L", L |
---|
1026 | assert allclose(L[1], val1) |
---|
1027 | |
---|
1028 | #Second order |
---|
1029 | domain.order = 2 |
---|
1030 | a = domain.quantities['stage'].compute_gradients() |
---|
1031 | print 'gradients', a |
---|
1032 | |
---|
1033 | domain.distribute_to_vertices_and_edges() |
---|
1034 | print "Second order L", L |
---|
1035 | print "L[1]", L[1] |
---|
1036 | #assert allclose(L[1], [2.2, 4.9, 4.9]) |
---|
1037 | assert allclose(L[1], [2.5, 5.5]) |
---|
1038 | |
---|
1039 | def test_distribute_away_from_bed(self): |
---|
1040 | #Using test data generated by pyvolution-2 |
---|
1041 | #Assuming no friction and flat bed (0.0) |
---|
1042 | |
---|
1043 | print "\ntest distribute awaway from bed" |
---|
1044 | |
---|
1045 | a=0.0 |
---|
1046 | b=2.0 |
---|
1047 | c=4.0 |
---|
1048 | d=6.0 |
---|
1049 | e=8.0 |
---|
1050 | #f=10.0 |
---|
1051 | |
---|
1052 | #points = [a, b, c, d, e, f] |
---|
1053 | points = [a, b, c, d, e] |
---|
1054 | |
---|
1055 | domain = Domain(points) |
---|
1056 | |
---|
1057 | L = domain.quantities['stage'].vertex_values |
---|
1058 | |
---|
1059 | #def stage(x,y): |
---|
1060 | # return x**2 |
---|
1061 | def stage(x): |
---|
1062 | return x**2 |
---|
1063 | |
---|
1064 | domain.set_quantity('stage', stage, location='centroids') |
---|
1065 | |
---|
1066 | a = domain.quantities['stage'].compute_gradients() |
---|
1067 | print 'a1', a |
---|
1068 | ###assert allclose(a[1], 3.33333334) |
---|
1069 | #assert allclose(b[1], 0.0) |
---|
1070 | |
---|
1071 | domain.order = 1 |
---|
1072 | domain.distribute_to_vertices_and_edges() |
---|
1073 | print 'l',L |
---|
1074 | #assert allclose(L[1], 1.77777778) |
---|
1075 | assert allclose(L[1], 9) |
---|
1076 | |
---|
1077 | domain.order = 2 |
---|
1078 | domain.distribute_to_vertices_and_edges() |
---|
1079 | assert allclose(L[1], [0.57777777, 2.37777778, 2.37777778]) |
---|
1080 | |
---|
1081 | """ |
---|
1082 | def test_1d_solution_I(self): |
---|
1083 | print "TEST 1D-SOLUTION I" |
---|
1084 | |
---|
1085 | L = 2000.0 # Length of channel (m) |
---|
1086 | N = 100 # Number of compuational cells |
---|
1087 | cell_len = L/N # Origin = 0.0 |
---|
1088 | |
---|
1089 | points = zeros(N+1,Float) |
---|
1090 | for i in range(N+1): |
---|
1091 | points[i] = i*cell_len |
---|
1092 | |
---|
1093 | domain = Domain(points) |
---|
1094 | |
---|
1095 | def stage(x): |
---|
1096 | for i in range(len(x)): |
---|
1097 | if x[i]<=1000.0: |
---|
1098 | x[i] = 10.0 |
---|
1099 | else: |
---|
1100 | x[i] = 5.0 |
---|
1101 | return x |
---|
1102 | |
---|
1103 | domain.set_quantity('stage', stage) |
---|
1104 | #L = domain.quantities['stage'].vertex_values |
---|
1105 | #print "Initial Stage" |
---|
1106 | #print L |
---|
1107 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
1108 | |
---|
1109 | import time |
---|
1110 | t0 = time.time() |
---|
1111 | yieldstep = 10 |
---|
1112 | finaltime = 50.0 |
---|
1113 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
1114 | pass |
---|
1115 | |
---|
1116 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
1117 | |
---|
1118 | #L = domain.quantities['stage'].vertex_values |
---|
1119 | #print "Final Stage" |
---|
1120 | #print L |
---|
1121 | |
---|
1122 | C = domain.quantities['stage'].vertex_values |
---|
1123 | #print C |
---|
1124 | |
---|
1125 | f = file('test_solution_I.out', 'w') |
---|
1126 | for i in range(N): |
---|
1127 | f.write(str(C[i,1])) |
---|
1128 | f.write("\n") |
---|
1129 | f.close |
---|
1130 | """ |
---|
1131 | """ |
---|
1132 | def test_1d_solution_II(self): |
---|
1133 | print "TEST 1D-SOLUTION II" |
---|
1134 | |
---|
1135 | L = 2000.0 # Length of channel (m) |
---|
1136 | N = 100 # Number of compuational cells |
---|
1137 | cell_len = L/N # Origin = 0.0 |
---|
1138 | |
---|
1139 | points = zeros(N+1,Float) |
---|
1140 | for i in range(N+1): |
---|
1141 | points[i] = i*cell_len |
---|
1142 | |
---|
1143 | domain = Domain(points) |
---|
1144 | |
---|
1145 | def stage(x): |
---|
1146 | for i in range(len(x)): |
---|
1147 | if x[i]<=1000.0: |
---|
1148 | x[i] = 10.0 |
---|
1149 | else: |
---|
1150 | x[i] = 0.1 |
---|
1151 | return x |
---|
1152 | |
---|
1153 | |
---|
1154 | domain.set_quantity('stage', stage) |
---|
1155 | #L = domain.quantities['stage'].vertex_values |
---|
1156 | #print "Initial Stage" |
---|
1157 | #print L |
---|
1158 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
1159 | |
---|
1160 | import time |
---|
1161 | t0 = time.time() |
---|
1162 | yieldstep = 1.0 |
---|
1163 | finaltime = 50.0 |
---|
1164 | |
---|
1165 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
1166 | a=0 |
---|
1167 | |
---|
1168 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
1169 | #L = domain.quantities['stage'].vertex_values |
---|
1170 | #print "Final Stage" |
---|
1171 | #print L |
---|
1172 | |
---|
1173 | C = domain.quantities['stage'].vertex_values |
---|
1174 | #print C |
---|
1175 | |
---|
1176 | f = file('test_solution_II.out', 'w') |
---|
1177 | for i in range(N): |
---|
1178 | f.write(str(C[i,1])) |
---|
1179 | f.write("\n") |
---|
1180 | f.close |
---|
1181 | |
---|
1182 | def test_1d_solution_III(self): |
---|
1183 | print "TEST 1D-SOLUTION III" |
---|
1184 | L = 2000.0 # Length of channel (m) |
---|
1185 | N = 100 # Number of compuational cells |
---|
1186 | cell_len = L/N # Origin = 0.0 |
---|
1187 | |
---|
1188 | points = zeros(N+1,Float) |
---|
1189 | for i in range(N+1): |
---|
1190 | points[i] = i*cell_len |
---|
1191 | |
---|
1192 | domain = Domain(points) |
---|
1193 | |
---|
1194 | def stage(x): |
---|
1195 | for i in range(len(x)): |
---|
1196 | if x[i]<=1000.0: |
---|
1197 | x[i] = 10.0 |
---|
1198 | else: |
---|
1199 | x[i] = 0.0 |
---|
1200 | return x |
---|
1201 | |
---|
1202 | domain.set_quantity('stage', stage) |
---|
1203 | #L = domain.quantities['stage'].vertex_values |
---|
1204 | #print "Initial Stage" |
---|
1205 | #print L |
---|
1206 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
1207 | |
---|
1208 | import time |
---|
1209 | t0 = time.time() |
---|
1210 | yieldstep = 1.0 |
---|
1211 | finaltime = 30.0 |
---|
1212 | |
---|
1213 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
1214 | a=0 |
---|
1215 | |
---|
1216 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
1217 | |
---|
1218 | #L = domain.quantities['stage'].vertex_values |
---|
1219 | #print "Final Stage" |
---|
1220 | #print L |
---|
1221 | |
---|
1222 | C = domain.quantities['stage'].vertex_values |
---|
1223 | #print C |
---|
1224 | |
---|
1225 | f = file('test_solution_III.out', 'w') |
---|
1226 | for i in range(N): |
---|
1227 | f.write(str(C[i,1])) |
---|
1228 | f.write("\n") |
---|
1229 | f.close |
---|
1230 | """ |
---|
1231 | #------------------------------------------------------------- |
---|
1232 | if __name__ == "__main__": |
---|
1233 | suite = unittest.makeSuite(TestCase,'test') |
---|
1234 | runner = unittest.TextTestRunner(verbosity=2) |
---|
1235 | runner.run(suite) |
---|