"""Script for running a dam break simulation of UQ's dam break tank. Ole Nielsen and Duncan Gray, GA - 2006 Issues If running this is hand-set-up parallel, the python files are overwritten. """ #---------------------------------------------------------------------------- # Import necessary modules #---------------------------------------------------------------------------- # Standard modules import time from time import localtime, strftime import sys from shutil import copy from os import path, sep from os.path import dirname #, basename from math import tan, radians # Related major packages from anuga.shallow_water import Domain, Reflective_boundary, \ Dirichlet_boundary, Time_boundary, File_boundary from anuga.abstract_2d_finite_volumes.region import Set_region from anuga.fit_interpolate.interpolate import interpolate_sww2csv from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, \ copy_code_files # Scenario specific imports import project # Definition of file names and polygons import create_mesh def main(friciton,beach_angle, toe_to_nails_distance, outputdir_name=None, is_trial_run=False): """ beach angle is the angle in degrees of the sloped section toe_to_nails_distance is the distance from the beginning if the sloped section to the beginning of the nails section """ basename = 'zz' + str(friction) if is_trial_run is True: outputdir_name += '_test' yieldstep = 0.1 finaltime = 4 else: yieldstep = 0.01 finaltime = 31 pro_instance = project.Project(['data','flumes','saman_2007'], outputdir_name=outputdir_name) mesh_filename = pro_instance.meshdir + basename + '.msh' #-------------------------------------------------------------------------- # Copy scripts to output directory and capture screen # output to file #-------------------------------------------------------------------------- # creates copy of code in output dir print "The output dir is", pro_instance.outputdir copy_code_files(pro_instance.outputdir,__file__, dirname(project.__file__) \ + sep + project.__name__+'.py') copy (pro_instance.codedir + 'run_dam.py', pro_instance.outputdir + 'run_dam' + str(friction)+ '.py') copy (pro_instance.codedir + 'create_mesh.py', pro_instance.outputdir + 'create_mesh.py') copy (pro_instance.codedir + 'project.py', pro_instance.outputdir + 'project.py') if is_trial_run is False: start_screen_catcher(pro_instance.outputdir, int(friction*100)) print 'USER: ', pro_instance.user #------------------------------------------------------------------------- # Create the triangular mesh #------------------------------------------------------------------------- #beach_angle = 15.0 #toe_to_nails_distance = .5 create_mesh.generate(mesh_filename, beach_angle, toe_to_nails_distance, is_coarse=is_trial_run) # this creates the mesh head,tail = path.split(mesh_filename) copy (mesh_filename, pro_instance.outputdir + tail ) #------------------------------------------------------------------------- # Setup computational domain #------------------------------------------------------------------------- domain = Domain(mesh_filename, use_cache = False, verbose = True) print 'Number of triangles = ', len(domain) print 'The extent is ', domain.get_extent() print domain.statistics() domain.set_name(basename) domain.set_datadir(pro_instance.outputdir) domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) domain.set_minimum_storable_height(0.01) #domain.set_store_vertices_uniquely(True) # for writting to sww def elevation_function(x,y): from Numeric import zeros, size, Float slope = create_mesh.xslope z = zeros(size(x), Float) for i in range(len(x)): if x[i] < slope: z[i] = 0.0 else: z[i] = (x[i]-slope)*tan(radians(beach_angle)) return z #------------------------------------------------------------------------- # Setup initial conditions #------------------------------------------------------------------------- domain.set_quantity('stage', elevation_function) domain.set_quantity('friction', friciton) domain.set_quantity('elevation', elevation_function) print 'Available boundary tags', domain.get_boundary_tags() domain.set_region('dam','stage',0.30, location = 'unique vertices') Br = Reflective_boundary(domain) Bd = Dirichlet_boundary([0,0,0]) # to drain the water out. domain.set_boundary( {'wall': Br, 'edge': Bd} ) #------------------------------------------------------------------------- # Evolve system through time #------------------------------------------------------------------------- t0 = time.time() for t in domain.evolve(yieldstep, finaltime): domain.write_time() print 'That took %.2f seconds' %(time.time()-t0) print 'finished' #------------------------------------------------------------------------- # Calculate gauge info #------------------------------------------------------------------------- if not is_trial_run: points = [[gate_position - 0.65,0.2], [gate_position - 0.55,0.2], [gate_position - 0.45,0.2], [gate_position - 0.35,0.2], [gate_position - 0.25,0.2] ] interpolate_sww2csv(pro_instance.outputdir + basename +".sww", points, pro_instance.outputdir + \ "depth_manning_"+str(friction)+".csv", pro_instance.outputdir + "velocity_x.csv", pro_instance.outputdir + "velocity_y.csv") return pro_instance #------------------------------------------------------------- if __name__ == "__main__": beach_angle = 3.0 toe_to_nails_distance = 0.1 for friction in [0.0,0.01]: main(friction,beach_angle, toe_to_nails_distance, is_trial_run = True, outputdir_name='testing')