[4959] | 1 | """Class Quantity - Implements values at each triangular element |
---|
| 2 | |
---|
| 3 | To create: |
---|
| 4 | |
---|
| 5 | Quantity(domain, vertex_values) |
---|
| 6 | |
---|
| 7 | domain: Associated domain structure. Required. |
---|
| 8 | |
---|
| 9 | vertex_values: N x 3 array of values at each vertex for each element. |
---|
| 10 | Default None |
---|
| 11 | |
---|
| 12 | If vertex_values are None Create array of zeros compatible with domain. |
---|
| 13 | Otherwise check that it is compatible with dimenions of domain. |
---|
| 14 | Otherwise raise an exception |
---|
| 15 | """ |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | class Quantity: |
---|
| 19 | |
---|
| 20 | def __init__(self, domain, vertex_values=None): |
---|
| 21 | |
---|
| 22 | from domain_t2 import Domain |
---|
| 23 | from Numeric import array, zeros, Float |
---|
| 24 | |
---|
| 25 | if vertex_values is None: |
---|
| 26 | N = domain.number_of_elements |
---|
| 27 | self.vertex_values = zeros((N, 2), Float) |
---|
| 28 | else: |
---|
| 29 | self.vertex_values = array(vertex_values).astype(Float) |
---|
| 30 | |
---|
| 31 | N, V = self.vertex_values.shape |
---|
| 32 | assert V == 2,\ |
---|
| 33 | 'Two vertex values per element must be specified' |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | msg = 'Number of vertex values (%d) must be consistent with'\ |
---|
| 37 | %N |
---|
| 38 | msg += 'number of elements in specified domain (%d).'\ |
---|
| 39 | %domain.number_of_elements |
---|
| 40 | |
---|
| 41 | assert N == domain.number_of_elements, msg |
---|
| 42 | |
---|
| 43 | self.domain = domain |
---|
| 44 | |
---|
| 45 | #Allocate space for other quantities |
---|
| 46 | self.centroid_values = zeros(N, Float) |
---|
| 47 | |
---|
| 48 | #Intialise centroid values |
---|
| 49 | self.interpolate() |
---|
| 50 | |
---|
| 51 | |
---|
| 52 | |
---|
| 53 | #Methods for operator overloading |
---|
| 54 | def __len__(self): |
---|
| 55 | return self.centroid_values.shape[0] |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | def __neg__(self): |
---|
| 59 | """Negate all values in this quantity giving meaning to the |
---|
| 60 | expression -Q where Q is an instance of class Quantity |
---|
| 61 | """ |
---|
| 62 | |
---|
| 63 | Q = Quantity(self.domain) |
---|
| 64 | Q.set_values(-self.vertex_values) |
---|
| 65 | return Q |
---|
| 66 | |
---|
| 67 | |
---|
| 68 | def __add__(self, other): |
---|
| 69 | """Add to self anything that could populate a quantity |
---|
| 70 | |
---|
| 71 | E.g other can be a constant, an array, a function, another quantity |
---|
| 72 | (except for a filename or points, attributes (for now)) |
---|
| 73 | - see set_values for details |
---|
| 74 | """ |
---|
| 75 | |
---|
| 76 | Q = Quantity(self.domain) |
---|
| 77 | Q.set_values(other) |
---|
| 78 | |
---|
| 79 | result = Quantity(self.domain) |
---|
| 80 | result.set_values(self.vertex_values + Q.vertex_values) |
---|
| 81 | return result |
---|
| 82 | |
---|
| 83 | def __radd__(self, other): |
---|
| 84 | """Handle cases like 7+Q, where Q is an instance of class Quantity |
---|
| 85 | """ |
---|
| 86 | return self + other |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | def __sub__(self, other): |
---|
| 90 | return self + -other #Invoke __neg__ |
---|
| 91 | |
---|
| 92 | def __mul__(self, other): |
---|
| 93 | """Multiply self with anything that could populate a quantity |
---|
| 94 | |
---|
| 95 | E.g other can be a constant, an array, a function, another quantity |
---|
| 96 | (except for a filename or points, attributes (for now)) |
---|
| 97 | - see set_values for details |
---|
| 98 | |
---|
| 99 | Note that if two quantitites q1 and q2 are multiplied, |
---|
| 100 | vertex values are multiplied entry by entry |
---|
| 101 | while centroid and edge values are re-interpolated. |
---|
| 102 | Hence they won't be the product of centroid or edge values |
---|
| 103 | from q1 and q2. |
---|
| 104 | """ |
---|
| 105 | |
---|
| 106 | Q = Quantity(self.domain) |
---|
| 107 | Q.set_values(other) |
---|
| 108 | |
---|
| 109 | result = Quantity(self.domain) |
---|
| 110 | result.set_values(self.vertex_values * Q.vertex_values) |
---|
| 111 | return result |
---|
| 112 | |
---|
| 113 | def __rmul__(self, other): |
---|
| 114 | """Handle cases like 3*Q, where Q is an instance of class Quantity |
---|
| 115 | """ |
---|
| 116 | return self * other |
---|
| 117 | |
---|
| 118 | def __pow__(self, other): |
---|
| 119 | """Raise quantity to (numerical) power |
---|
| 120 | |
---|
| 121 | As with __mul__ vertex values are processed entry by entry |
---|
| 122 | while centroid and edge values are re-interpolated. |
---|
| 123 | |
---|
| 124 | Example using __pow__: |
---|
| 125 | Q = (Q1**2 + Q2**2)**0.5 |
---|
| 126 | |
---|
| 127 | """ |
---|
| 128 | |
---|
| 129 | result = Quantity(self.domain) |
---|
| 130 | result.set_values(self.vertex_values**other) |
---|
| 131 | return result |
---|
| 132 | |
---|
| 133 | |
---|
| 134 | |
---|
| 135 | def interpolate(self): |
---|
| 136 | """Compute interpolated values at edges and centroid |
---|
| 137 | Pre-condition: vertex_values have been set |
---|
| 138 | """ |
---|
| 139 | |
---|
| 140 | N = self.vertex_values.shape[0] |
---|
| 141 | for i in range(N): |
---|
| 142 | v0 = self.vertex_values[i, 0] |
---|
| 143 | v1 = self.vertex_values[i, 1] |
---|
| 144 | |
---|
| 145 | self.centroid_values[i] = (v0 + v1)/2.0 |
---|
| 146 | |
---|
| 147 | |
---|
| 148 | def set_values(self, X, location='vertices'): |
---|
| 149 | """Set values for quantity |
---|
| 150 | |
---|
| 151 | X: Compatible list, Numeric array (see below), constant or function |
---|
| 152 | location: Where values are to be stored. |
---|
| 153 | Permissible options are: vertices, centroid |
---|
| 154 | Default is "vertices" |
---|
| 155 | |
---|
| 156 | In case of location == 'centroid' the dimension values must |
---|
| 157 | be a list of a Numerical array of length N, N being the number |
---|
| 158 | of elements in the mesh. Otherwise it must be of dimension Nx3 |
---|
| 159 | |
---|
| 160 | The values will be stored in elements following their |
---|
| 161 | internal ordering. |
---|
| 162 | |
---|
| 163 | If values are described a function, it will be evaluated at specified points |
---|
| 164 | |
---|
| 165 | If selected location is vertices, values for centroid and edges |
---|
| 166 | will be assigned interpolated values. |
---|
| 167 | In any other case, only values for the specified locations |
---|
| 168 | will be assigned and the others will be left undefined. |
---|
| 169 | """ |
---|
| 170 | |
---|
| 171 | if location not in ['vertices', 'centroids']: |
---|
| 172 | msg = 'Invalid location: %s, (possible choices vertices, centroids)' %location |
---|
| 173 | raise msg |
---|
| 174 | |
---|
| 175 | if X is None: |
---|
| 176 | msg = 'Given values are None' |
---|
| 177 | raise msg |
---|
| 178 | |
---|
| 179 | import types |
---|
| 180 | |
---|
| 181 | if callable(X): |
---|
| 182 | #Use function specific method |
---|
| 183 | self.set_function_values(X, location) |
---|
| 184 | elif type(X) in [types.FloatType, types.IntType, types.LongType]: |
---|
| 185 | if location == 'centroids': |
---|
| 186 | self.centroid_values[:] = X |
---|
| 187 | else: |
---|
| 188 | self.vertex_values[:] = X |
---|
| 189 | |
---|
| 190 | else: |
---|
| 191 | #Use array specific method |
---|
| 192 | self.set_array_values(X, location) |
---|
| 193 | |
---|
| 194 | if location == 'vertices': |
---|
| 195 | #Intialise centroid values |
---|
| 196 | self.interpolate() |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | def set_function_values(self, f, location='vertices'): |
---|
| 202 | """Set values for quantity using specified function |
---|
| 203 | |
---|
| 204 | f: x -> z Function where x and z are arrays |
---|
| 205 | location: Where values are to be stored. |
---|
| 206 | Permissible options are: vertices, centroid |
---|
| 207 | Default is "vertices" |
---|
| 208 | """ |
---|
| 209 | |
---|
| 210 | if location == 'centroids': |
---|
| 211 | |
---|
| 212 | P = self.domain.centroids |
---|
| 213 | self.set_values(f(P), location) |
---|
| 214 | else: |
---|
| 215 | #Vertices |
---|
| 216 | P = self.domain.get_vertices() |
---|
| 217 | |
---|
| 218 | for i in range(2): |
---|
| 219 | self.vertex_values[:,i] = f(P[:,i]) |
---|
| 220 | |
---|
| 221 | def set_array_values(self, values, location='vertices'): |
---|
| 222 | """Set values for quantity |
---|
| 223 | |
---|
| 224 | values: Numeric array |
---|
| 225 | location: Where values are to be stored. |
---|
| 226 | Permissible options are: vertices, centroid, edges |
---|
| 227 | Default is "vertices" |
---|
| 228 | |
---|
| 229 | In case of location == 'centroid' the dimension values must |
---|
| 230 | be a list of a Numerical array of length N, N being the number |
---|
| 231 | of elements in the mesh. Otherwise it must be of dimension Nx2 |
---|
| 232 | |
---|
| 233 | The values will be stored in elements following their |
---|
| 234 | internal ordering. |
---|
| 235 | |
---|
| 236 | If selected location is vertices, values for centroid |
---|
| 237 | will be assigned interpolated values. |
---|
| 238 | In any other case, only values for the specified locations |
---|
| 239 | will be assigned and the others will be left undefined. |
---|
| 240 | """ |
---|
| 241 | |
---|
| 242 | from Numeric import array, Float |
---|
| 243 | |
---|
| 244 | values = array(values).astype(Float) |
---|
| 245 | |
---|
| 246 | N = self.centroid_values.shape[0] |
---|
| 247 | |
---|
| 248 | msg = 'Number of values must match number of elements' |
---|
| 249 | assert values.shape[0] == N, msg |
---|
| 250 | |
---|
| 251 | if location == 'centroids': |
---|
| 252 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
| 253 | self.centroid_values = values |
---|
| 254 | else: |
---|
| 255 | assert len(values.shape) == 2, 'Values array must be 2d' |
---|
| 256 | msg = 'Array must be N x 2' |
---|
| 257 | assert values.shape[1] == 2, msg |
---|
| 258 | |
---|
| 259 | self.vertex_values = values |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | def extrapolate_first_order(self): |
---|
| 263 | """Extrapolate conserved quantities from centroid to |
---|
| 264 | vertices for each volume using |
---|
| 265 | first order scheme. |
---|
| 266 | """ |
---|
| 267 | |
---|
| 268 | qc = self.centroid_values |
---|
| 269 | qv = self.vertex_values |
---|
| 270 | |
---|
| 271 | for i in range(2): |
---|
| 272 | qv[:,i] = qc |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | def get_integral(self): |
---|
| 276 | """Compute the integral of quantity across entire domain |
---|
| 277 | """ |
---|
| 278 | integral = 0 |
---|
| 279 | for k in range(self.domain.number_of_elements): |
---|
| 280 | area = self.domain.areas[k] |
---|
| 281 | qc = self.centroid_values[k] |
---|
| 282 | integral += qc*area |
---|
| 283 | |
---|
| 284 | return integral |
---|
| 285 | |
---|
| 286 | |
---|
| 287 | |
---|
| 288 | |
---|
| 289 | class Conserved_quantity(Quantity): |
---|
| 290 | """Class conserved quantity adds to Quantity: |
---|
| 291 | |
---|
| 292 | boundary values, storage and method for updating, and |
---|
| 293 | methods for (second order) extrapolation from centroid to vertices inluding |
---|
| 294 | gradients and limiters |
---|
| 295 | """ |
---|
| 296 | |
---|
| 297 | def __init__(self, domain, vertex_values=None): |
---|
| 298 | Quantity.__init__(self, domain, vertex_values) |
---|
| 299 | |
---|
| 300 | from Numeric import zeros, Float |
---|
| 301 | |
---|
| 302 | #Allocate space for boundary values |
---|
| 303 | L = len(domain.boundary) |
---|
| 304 | self.boundary_values = zeros(L, Float) |
---|
| 305 | |
---|
| 306 | #Allocate space for updates of conserved quantities by |
---|
| 307 | #flux calculations and forcing functions |
---|
| 308 | |
---|
| 309 | N = domain.number_of_elements |
---|
| 310 | self.gradients = zeros(N, Float) |
---|
| 311 | self.explicit_update = zeros(N, Float ) |
---|
| 312 | self.semi_implicit_update = zeros(N, Float ) |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | def update(self, timestep): |
---|
| 316 | #Call correct module function |
---|
| 317 | #(either from this module or C-extension) |
---|
| 318 | return update(self, timestep) |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | def compute_gradients(self): |
---|
| 322 | #Call correct module function |
---|
| 323 | #(either from this module or C-extension) |
---|
| 324 | return compute_gradients(self) |
---|
| 325 | |
---|
| 326 | |
---|
| 327 | def limit(self): |
---|
| 328 | #Call correct module function |
---|
| 329 | #(either from this module or C-extension) |
---|
| 330 | limit(self) |
---|
| 331 | |
---|
| 332 | |
---|
| 333 | def extrapolate_second_order(self): |
---|
| 334 | #Call correct module function |
---|
| 335 | #(either from this module or C-extension) |
---|
| 336 | extrapolate_second_order(self) |
---|
| 337 | |
---|
| 338 | |
---|
| 339 | def update(quantity, timestep): |
---|
| 340 | """Update centroid values based on values stored in |
---|
| 341 | explicit_update and semi_implicit_update as well as given timestep |
---|
| 342 | |
---|
| 343 | Function implementing forcing terms must take on argument |
---|
| 344 | which is the domain and they must update either explicit |
---|
| 345 | or implicit updates, e,g,: |
---|
| 346 | |
---|
| 347 | def gravity(domain): |
---|
| 348 | .... |
---|
| 349 | domain.quantities['xmomentum'].explicit_update = ... |
---|
| 350 | domain.quantities['ymomentum'].explicit_update = ... |
---|
| 351 | |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | Explicit terms must have the form |
---|
| 355 | |
---|
| 356 | G(q, t) |
---|
| 357 | |
---|
| 358 | and explicit scheme is |
---|
| 359 | |
---|
| 360 | q^{(n+1}) = q^{(n)} + delta_t G(q^{n}, n delta_t) |
---|
| 361 | |
---|
| 362 | |
---|
| 363 | Semi implicit forcing terms are assumed to have the form |
---|
| 364 | |
---|
| 365 | G(q, t) = H(q, t) q |
---|
| 366 | |
---|
| 367 | and the semi implicit scheme will then be |
---|
| 368 | |
---|
| 369 | q^{(n+1}) = q^{(n)} + delta_t H(q^{n}, n delta_t) q^{(n+1}) |
---|
| 370 | |
---|
| 371 | |
---|
| 372 | """ |
---|
| 373 | |
---|
| 374 | from Numeric import sum, equal, ones, exp, Float |
---|
| 375 | |
---|
| 376 | N = quantity.centroid_values.shape[0] |
---|
| 377 | |
---|
| 378 | |
---|
| 379 | #Divide H by conserved quantity to obtain G (see docstring above) |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | for k in range(N): |
---|
| 383 | x = quantity.centroid_values[k] |
---|
| 384 | if x == 0.0: |
---|
| 385 | #FIXME: Is this right |
---|
| 386 | quantity.semi_implicit_update[k] = 0.0 |
---|
| 387 | else: |
---|
| 388 | quantity.semi_implicit_update[k] /= x |
---|
| 389 | |
---|
| 390 | |
---|
| 391 | #Semi implicit updates |
---|
| 392 | denominator = ones(N, Float)-timestep*quantity.semi_implicit_update |
---|
| 393 | |
---|
| 394 | if sum(equal(denominator, 0.0)) > 0.0: |
---|
| 395 | msg = 'Zero division in semi implicit update. Call Stephen :-)' |
---|
| 396 | raise msg |
---|
| 397 | else: |
---|
| 398 | #Update conserved_quantities from semi implicit updates |
---|
| 399 | quantity.centroid_values /= denominator |
---|
| 400 | |
---|
| 401 | # quantity.centroid_values = exp(timestep*quantity.semi_implicit_update)*quantity.centroid_values |
---|
| 402 | |
---|
| 403 | |
---|
| 404 | #Explicit updates |
---|
| 405 | quantity.centroid_values += timestep*quantity.explicit_update |
---|
| 406 | |
---|
| 407 | def extrapolate_second_order(quantity): |
---|
| 408 | """Extrapolate conserved quantities from centroid to |
---|
| 409 | vertices for each volume using |
---|
| 410 | second order scheme. |
---|
| 411 | """ |
---|
| 412 | |
---|
| 413 | quantity.compute_gradients() |
---|
| 414 | a = quantity.gradients |
---|
| 415 | |
---|
| 416 | X = quantity.domain.vertices |
---|
| 417 | qc = quantity.centroid_values |
---|
| 418 | qv = quantity.vertex_values |
---|
| 419 | |
---|
| 420 | #Check each triangle |
---|
| 421 | for k in range(quantity.domain.number_of_elements): |
---|
| 422 | #Centroid coordinates |
---|
| 423 | x = quantity.domain.centroids[k] |
---|
| 424 | |
---|
| 425 | #vertex coordinates |
---|
| 426 | x0, x1 = X[k,:] |
---|
| 427 | |
---|
| 428 | #Extrapolate |
---|
| 429 | qv[k,0] = qc[k] + a[k]*(x0-x) |
---|
| 430 | qv[k,1] = qc[k] + a[k]*(x1-x) |
---|
| 431 | |
---|
| 432 | quantity.limit() |
---|
| 433 | |
---|
| 434 | def compute_gradients(self): |
---|
| 435 | """Compute gradients of piecewise linear function defined by centroids of |
---|
| 436 | neighbouring volumes. |
---|
| 437 | """ |
---|
| 438 | |
---|
| 439 | |
---|
| 440 | from Numeric import array, zeros, Float |
---|
| 441 | |
---|
| 442 | N = self.centroid_values.shape[0] |
---|
| 443 | |
---|
| 444 | |
---|
| 445 | G = self.gradients |
---|
| 446 | Q = self.centroid_values |
---|
| 447 | X = self.domain.centroids |
---|
| 448 | |
---|
| 449 | for k in range(N): |
---|
| 450 | |
---|
| 451 | # first and last elements have boundaries |
---|
| 452 | |
---|
| 453 | if k == 0: |
---|
| 454 | |
---|
| 455 | #Get data |
---|
| 456 | k0 = k |
---|
| 457 | k1 = k+1 |
---|
| 458 | |
---|
| 459 | q0 = Q[k0] |
---|
| 460 | q1 = Q[k1] |
---|
| 461 | |
---|
| 462 | x0 = X[k0] #V0 centroid |
---|
| 463 | x1 = X[k1] #V1 centroid |
---|
| 464 | |
---|
| 465 | #Gradient |
---|
| 466 | G[k] = (q1 - q0)/(x1 - x0) |
---|
| 467 | |
---|
| 468 | elif k == N-1: |
---|
| 469 | |
---|
| 470 | #Get data |
---|
| 471 | k0 = k |
---|
| 472 | k1 = k-1 |
---|
| 473 | |
---|
| 474 | q0 = Q[k0] |
---|
| 475 | q1 = Q[k1] |
---|
| 476 | |
---|
| 477 | x0 = X[k0] #V0 centroid |
---|
| 478 | x1 = X[k1] #V1 centroid |
---|
| 479 | |
---|
| 480 | #Gradient |
---|
| 481 | G[k] = (q1 - q0)/(x1 - x0) |
---|
| 482 | |
---|
| 483 | else: |
---|
| 484 | #Interior Volume (2 neighbours) |
---|
| 485 | |
---|
| 486 | #Get data |
---|
| 487 | k0 = k-1 |
---|
| 488 | k2 = k+1 |
---|
| 489 | |
---|
| 490 | q0 = Q[k0] |
---|
| 491 | q1 = Q[k] |
---|
| 492 | q2 = Q[k2] |
---|
| 493 | |
---|
| 494 | x0 = X[k0] #V0 centroid |
---|
| 495 | x1 = X[k] #V1 centroid (Self) |
---|
| 496 | x2 = X[k2] #V2 centroid |
---|
| 497 | |
---|
| 498 | #Gradient |
---|
| 499 | #G[k] = (q2-q0)/(x2-x0) |
---|
| 500 | G[k] = ((q0-q1)/(x0-x1)*(x2-x1) - (q2-q1)/(x2-x1)*(x0-x1))/(x2-x0) |
---|
| 501 | |
---|
| 502 | def limit(quantity): |
---|
| 503 | """Limit slopes for each volume to eliminate artificial variance |
---|
| 504 | introduced by e.g. second order extrapolator |
---|
| 505 | |
---|
| 506 | This is an unsophisticated limiter as it does not take into |
---|
| 507 | account dependencies among quantities. |
---|
| 508 | |
---|
| 509 | precondition: |
---|
| 510 | vertex values are estimated from gradient |
---|
| 511 | postcondition: |
---|
| 512 | vertex values are updated |
---|
| 513 | """ |
---|
| 514 | |
---|
| 515 | from Numeric import zeros, Float |
---|
| 516 | |
---|
| 517 | N = quantity.domain.number_of_elements |
---|
| 518 | |
---|
| 519 | beta = quantity.domain.beta |
---|
| 520 | |
---|
| 521 | qc = quantity.centroid_values |
---|
| 522 | qv = quantity.vertex_values |
---|
| 523 | |
---|
| 524 | #Find min and max of this and neighbour's centroid values |
---|
| 525 | qmax = zeros(qc.shape, Float) |
---|
| 526 | qmin = zeros(qc.shape, Float) |
---|
| 527 | |
---|
| 528 | for k in range(N): |
---|
| 529 | qmax[k] = qmin[k] = qc[k] |
---|
| 530 | for i in range(2): |
---|
| 531 | n = quantity.domain.neighbours[k,i] |
---|
| 532 | if n >= 0: |
---|
| 533 | qn = qc[n] #Neighbour's centroid value |
---|
| 534 | |
---|
| 535 | qmin[k] = min(qmin[k], qn) |
---|
| 536 | qmax[k] = max(qmax[k], qn) |
---|
| 537 | |
---|
| 538 | #Diffences between centroids and maxima/minima |
---|
| 539 | dqmax = qmax - qc |
---|
| 540 | dqmin = qmin - qc |
---|
| 541 | |
---|
| 542 | #Deltas between vertex and centroid values |
---|
| 543 | dq = zeros(qv.shape, Float) |
---|
| 544 | for i in range(2): |
---|
| 545 | dq[:,i] = qv[:,i] - qc |
---|
| 546 | |
---|
| 547 | #Phi limiter |
---|
| 548 | for k in range(N): |
---|
| 549 | |
---|
| 550 | #Find the gradient limiter (phi) across vertices |
---|
| 551 | phi = 1.0 |
---|
| 552 | for i in range(2): |
---|
| 553 | r = 1.0 |
---|
| 554 | if (dq[k,i] > 0): r = dqmax[k]/dq[k,i] |
---|
| 555 | if (dq[k,i] < 0): r = dqmin[k]/dq[k,i] |
---|
| 556 | |
---|
| 557 | phi = min( min(r*beta, 1), phi ) |
---|
| 558 | |
---|
| 559 | #Then update using phi limiter |
---|
| 560 | for i in range(2): |
---|
| 561 | qv[k,i] = qc[k] + phi*dq[k,i] |
---|