1 | """Class Domain - |
---|
2 | 1D interval domains for finite-volume computations of |
---|
3 | the shallow water wave equation. |
---|
4 | |
---|
5 | This module contains a specialisation of class Domain from module domain.py |
---|
6 | consisting of methods specific to the Shallow Water Wave Equation |
---|
7 | |
---|
8 | |
---|
9 | U_t + E_x = S |
---|
10 | |
---|
11 | where |
---|
12 | |
---|
13 | U = [w, uh] |
---|
14 | E = [uh, u^2h + gh^2/2] |
---|
15 | S represents source terms forcing the system |
---|
16 | (e.g. gravity, friction, wind stress, ...) |
---|
17 | |
---|
18 | and _t, _x, _y denote the derivative with respect to t, x and y respectiely. |
---|
19 | |
---|
20 | The quantities are |
---|
21 | |
---|
22 | symbol variable name explanation |
---|
23 | x x horizontal distance from origin [m] |
---|
24 | z elevation elevation of bed on which flow is modelled [m] |
---|
25 | h height water height above z [m] |
---|
26 | w stage absolute water level, w = z+h [m] |
---|
27 | u speed in the x direction [m/s] |
---|
28 | uh xmomentum momentum in the x direction [m^2/s] |
---|
29 | |
---|
30 | eta mannings friction coefficient [to appear] |
---|
31 | nu wind stress coefficient [to appear] |
---|
32 | |
---|
33 | The conserved quantities are w, uh |
---|
34 | |
---|
35 | For details see e.g. |
---|
36 | Christopher Zoppou and Stephen Roberts, |
---|
37 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
38 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
39 | |
---|
40 | |
---|
41 | John Jakeman, Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
42 | Geoscience Australia, 2006 |
---|
43 | """ |
---|
44 | |
---|
45 | #from domain import * |
---|
46 | #from domain_order2 import * |
---|
47 | from domain_t2 import * |
---|
48 | Generic_Domain = Domain #Rename |
---|
49 | |
---|
50 | #Shallow water domain |
---|
51 | class Domain(Generic_Domain): |
---|
52 | |
---|
53 | def __init__(self, coordinates, boundary = None, tagged_elements = None): |
---|
54 | |
---|
55 | conserved_quantities = ['stage', 'xmomentum'] |
---|
56 | other_quantities = ['elevation', 'friction'] |
---|
57 | Generic_Domain.__init__(self, coordinates, boundary, |
---|
58 | conserved_quantities, other_quantities, |
---|
59 | tagged_elements) |
---|
60 | |
---|
61 | from config import minimum_allowed_height, g |
---|
62 | self.minimum_allowed_height = minimum_allowed_height |
---|
63 | self.g = g |
---|
64 | |
---|
65 | #forcing terms not included in 1d domain ?WHy? |
---|
66 | self.forcing_terms.append(gravity) |
---|
67 | #self.forcing_terms.append(manning_friction) |
---|
68 | #print "\nI have Removed forcing terms line 64 1dsw" |
---|
69 | |
---|
70 | #Realtime visualisation |
---|
71 | self.visualiser = None |
---|
72 | self.visualise = False |
---|
73 | self.visualise_color_stage = False |
---|
74 | self.visualise_stage_range = 1.0 |
---|
75 | self.visualise_timer = True |
---|
76 | self.visualise_range_z = None |
---|
77 | |
---|
78 | #Stored output |
---|
79 | self.store = True |
---|
80 | self.format = 'sww' |
---|
81 | self.smooth = True |
---|
82 | |
---|
83 | #Evolve parametrs |
---|
84 | self.cfl = 1.0 |
---|
85 | |
---|
86 | #Reduction operation for get_vertex_values |
---|
87 | from util import mean |
---|
88 | self.reduction = mean |
---|
89 | #self.reduction = min #Looks better near steep slopes |
---|
90 | |
---|
91 | self.quantities_to_be_stored = ['stage','xmomentum'] |
---|
92 | |
---|
93 | |
---|
94 | def set_quantities_to_be_stored(self, q): |
---|
95 | """Specify which quantities will be stored in the sww file. |
---|
96 | |
---|
97 | q must be either: |
---|
98 | - the name of a quantity |
---|
99 | - a list of quantity names |
---|
100 | - None |
---|
101 | |
---|
102 | In the two first cases, the named quantities will be stored at each |
---|
103 | yieldstep |
---|
104 | (This is in addition to the quantities elevation and friction) |
---|
105 | If q is None, storage will be switched off altogether. |
---|
106 | """ |
---|
107 | |
---|
108 | |
---|
109 | if q is None: |
---|
110 | self.quantities_to_be_stored = [] |
---|
111 | self.store = False |
---|
112 | return |
---|
113 | |
---|
114 | if isinstance(q, basestring): |
---|
115 | q = [q] # Turn argument into a list |
---|
116 | |
---|
117 | #Check correcness |
---|
118 | for quantity_name in q: |
---|
119 | msg = 'Quantity %s is not a valid conserved quantity' %quantity_name |
---|
120 | assert quantity_name in self.conserved_quantities, msg |
---|
121 | |
---|
122 | self.quantities_to_be_stored = q |
---|
123 | |
---|
124 | |
---|
125 | def initialise_visualiser(self,scale_z=1.0,rect=None): |
---|
126 | #Realtime visualisation |
---|
127 | if self.visualiser is None: |
---|
128 | from realtime_visualisation_new import Visualiser |
---|
129 | self.visualiser = Visualiser(self,scale_z,rect) |
---|
130 | self.visualiser.setup['elevation']=True |
---|
131 | self.visualiser.updating['stage']=True |
---|
132 | self.visualise = True |
---|
133 | if self.visualise_color_stage == True: |
---|
134 | self.visualiser.coloring['stage'] = True |
---|
135 | self.visualiser.qcolor['stage'] = (0.0, 0.0, 0.8) |
---|
136 | print 'initialise visualiser' |
---|
137 | print self.visualiser.setup |
---|
138 | print self.visualiser.updating |
---|
139 | |
---|
140 | def check_integrity(self): |
---|
141 | Generic_Domain.check_integrity(self) |
---|
142 | #Check that we are solving the shallow water wave equation |
---|
143 | |
---|
144 | msg = 'First conserved quantity must be "stage"' |
---|
145 | assert self.conserved_quantities[0] == 'stage', msg |
---|
146 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
147 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
148 | |
---|
149 | def extrapolate_second_order_sw(self): |
---|
150 | #Call correct module function |
---|
151 | #(either from this module or C-extension) |
---|
152 | extrapolate_second_order_sw(self) |
---|
153 | |
---|
154 | def compute_fluxes(self): |
---|
155 | #Call correct module function |
---|
156 | #(either from this module or C-extension) |
---|
157 | compute_fluxes(self) |
---|
158 | |
---|
159 | def compute_timestep(self): |
---|
160 | #Call correct module function |
---|
161 | compute_timestep(self) |
---|
162 | |
---|
163 | def distribute_to_vertices_and_edges(self): |
---|
164 | #Call correct module function |
---|
165 | #(either from this module or C-extension) |
---|
166 | distribute_to_vertices_and_edges(self) |
---|
167 | |
---|
168 | def evolve(self, yieldstep = None, finaltime = None, |
---|
169 | skip_initial_step = False): |
---|
170 | """Specialisation of basic evolve method from parent class |
---|
171 | """ |
---|
172 | |
---|
173 | #Call check integrity here rather than from user scripts |
---|
174 | #self.check_integrity() |
---|
175 | |
---|
176 | #msg = 'Parameter beta_h must be in the interval [0, 1)' |
---|
177 | #assert 0 <= self.beta_h < 1.0, msg |
---|
178 | #msg = 'Parameter beta_w must be in the interval [0, 1)' |
---|
179 | #assert 0 <= self.beta_w < 1.0, msg |
---|
180 | |
---|
181 | |
---|
182 | #Initial update of vertex and edge values before any storage |
---|
183 | #and or visualisation |
---|
184 | |
---|
185 | self.distribute_to_vertices_and_edges() |
---|
186 | |
---|
187 | #Initialise real time viz if requested |
---|
188 | #if self.visualise is True and self.time == 0.0: |
---|
189 | # if self.visualiser is None: |
---|
190 | # self.initialise_visualiser() |
---|
191 | # |
---|
192 | # self.visualiser.update_timer() |
---|
193 | # self.visualiser.setup_all() |
---|
194 | |
---|
195 | #Store model data, e.g. for visualisation |
---|
196 | #if self.store is True and self.time == 0.0: |
---|
197 | # self.initialise_storage() |
---|
198 | # #print 'Storing results in ' + self.writer.filename |
---|
199 | #else: |
---|
200 | # pass |
---|
201 | # #print 'Results will not be stored.' |
---|
202 | # #print 'To store results set domain.store = True' |
---|
203 | # #FIXME: Diagnostic output should be controlled by |
---|
204 | # # a 'verbose' flag living in domain (or in a parent class) |
---|
205 | |
---|
206 | #Call basic machinery from parent class |
---|
207 | for t in Generic_Domain.evolve(self, yieldstep, finaltime, |
---|
208 | skip_initial_step): |
---|
209 | #Real time viz |
---|
210 | # if self.visualise is True: |
---|
211 | # self.visualiser.update_all() |
---|
212 | # self.visualiser.update_timer() |
---|
213 | |
---|
214 | |
---|
215 | #Store model data, e.g. for subsequent visualisation |
---|
216 | # if self.store is True: |
---|
217 | # self.store_timestep(self.quantities_to_be_stored) |
---|
218 | |
---|
219 | #FIXME: Could maybe be taken from specified list |
---|
220 | #of 'store every step' quantities |
---|
221 | |
---|
222 | #Pass control on to outer loop for more specific actions |
---|
223 | yield(t) |
---|
224 | |
---|
225 | def initialise_storage(self): |
---|
226 | """Create and initialise self.writer object for storing data. |
---|
227 | Also, save x and bed elevation |
---|
228 | """ |
---|
229 | |
---|
230 | import data_manager |
---|
231 | |
---|
232 | #Initialise writer |
---|
233 | self.writer = data_manager.get_dataobject(self, mode = 'w') |
---|
234 | |
---|
235 | #Store vertices and connectivity |
---|
236 | self.writer.store_connectivity() |
---|
237 | |
---|
238 | |
---|
239 | def store_timestep(self, name): |
---|
240 | """Store named quantity and time. |
---|
241 | |
---|
242 | Precondition: |
---|
243 | self.write has been initialised |
---|
244 | """ |
---|
245 | self.writer.store_timestep(name) |
---|
246 | |
---|
247 | |
---|
248 | #=============== End of Shallow Water Domain =============================== |
---|
249 | |
---|
250 | #Rotation of momentum vector |
---|
251 | def rotate(q, normal, direction = 1): |
---|
252 | """Rotate the momentum component q (q[1], q[2]) |
---|
253 | from x,y coordinates to coordinates based on normal vector. |
---|
254 | |
---|
255 | If direction is negative the rotation is inverted. |
---|
256 | |
---|
257 | Input vector is preserved |
---|
258 | |
---|
259 | This function is specific to the shallow water wave equation |
---|
260 | """ |
---|
261 | |
---|
262 | from Numeric import zeros, Float |
---|
263 | |
---|
264 | assert len(q) == 3,\ |
---|
265 | 'Vector of conserved quantities must have length 3'\ |
---|
266 | 'for 2D shallow water equation' |
---|
267 | |
---|
268 | try: |
---|
269 | l = len(normal) |
---|
270 | except: |
---|
271 | raise 'Normal vector must be an Numeric array' |
---|
272 | |
---|
273 | assert l == 2, 'Normal vector must have 2 components' |
---|
274 | |
---|
275 | |
---|
276 | n1 = normal[0] |
---|
277 | n2 = normal[1] |
---|
278 | |
---|
279 | r = zeros(len(q), Float) #Rotated quantities |
---|
280 | r[0] = q[0] #First quantity, height, is not rotated |
---|
281 | |
---|
282 | if direction == -1: |
---|
283 | n2 = -n2 |
---|
284 | |
---|
285 | |
---|
286 | r[1] = n1*q[1] + n2*q[2] |
---|
287 | r[2] = -n2*q[1] + n1*q[2] |
---|
288 | |
---|
289 | return r |
---|
290 | |
---|
291 | |
---|
292 | def flux_function(normal, ql, qr, zl, zr): |
---|
293 | """Compute fluxes between volumes for the shallow water wave equation |
---|
294 | cast in terms of w = h+z using the 'central scheme' as described in |
---|
295 | |
---|
296 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
297 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
298 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
299 | |
---|
300 | The implemented formula is given in equation (3.15) on page 714 |
---|
301 | |
---|
302 | Conserved quantities w, uh, are stored as elements 0 and 1 |
---|
303 | in the numerical vectors ql an qr. |
---|
304 | |
---|
305 | Bed elevations zl and zr. |
---|
306 | """ |
---|
307 | |
---|
308 | from config import g, epsilon |
---|
309 | from math import sqrt |
---|
310 | from Numeric import array |
---|
311 | |
---|
312 | #print 'ql',ql |
---|
313 | |
---|
314 | #Align momentums with x-axis |
---|
315 | #q_left = rotate(ql, normal, direction = 1) |
---|
316 | #q_right = rotate(qr, normal, direction = 1) |
---|
317 | q_left = ql |
---|
318 | q_left[1] = q_left[1]*normal |
---|
319 | q_right = qr |
---|
320 | q_right[1] = q_right[1]*normal |
---|
321 | |
---|
322 | #z = (zl+zr)/2 #Take average of field values |
---|
323 | z = 0.5*(zl+zr) #Take average of field values |
---|
324 | |
---|
325 | w_left = q_left[0] #w=h+z |
---|
326 | h_left = w_left-z |
---|
327 | uh_left = q_left[1] |
---|
328 | |
---|
329 | if h_left < epsilon: |
---|
330 | u_left = 0.0 #Could have been negative |
---|
331 | h_left = 0.0 |
---|
332 | else: |
---|
333 | u_left = uh_left/h_left |
---|
334 | |
---|
335 | |
---|
336 | w_right = q_right[0] #w=h+z |
---|
337 | h_right = w_right-z |
---|
338 | uh_right = q_right[1] |
---|
339 | |
---|
340 | |
---|
341 | if h_right < epsilon: |
---|
342 | u_right = 0.0 #Could have been negative |
---|
343 | h_right = 0.0 |
---|
344 | else: |
---|
345 | u_right = uh_right/h_right |
---|
346 | |
---|
347 | #vh_left = q_left[2] |
---|
348 | #vh_right = q_right[2] |
---|
349 | |
---|
350 | #print h_right |
---|
351 | #print u_right |
---|
352 | #print h_left |
---|
353 | #print u_right |
---|
354 | |
---|
355 | soundspeed_left = sqrt(g*h_left) |
---|
356 | soundspeed_right = sqrt(g*h_right) |
---|
357 | |
---|
358 | #Maximal wave speed |
---|
359 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
360 | |
---|
361 | #Minimal wave speed |
---|
362 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
363 | |
---|
364 | #Flux computation |
---|
365 | |
---|
366 | #flux_left = array([u_left*h_left, |
---|
367 | # u_left*uh_left + 0.5*g*h_left**2]) |
---|
368 | #flux_right = array([u_right*h_right, |
---|
369 | # u_right*uh_right + 0.5*g*h_right**2]) |
---|
370 | flux_left = array([u_left*h_left, |
---|
371 | u_left*uh_left + 0.5*g*h_left*h_left]) |
---|
372 | flux_right = array([u_right*h_right, |
---|
373 | u_right*uh_right + 0.5*g*h_right*h_right]) |
---|
374 | |
---|
375 | denom = s_max-s_min |
---|
376 | if denom == 0.0: |
---|
377 | edgeflux = array([0.0, 0.0]) |
---|
378 | max_speed = 0.0 |
---|
379 | else: |
---|
380 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
381 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
382 | |
---|
383 | edgeflux[1] = edgeflux[1]*normal |
---|
384 | |
---|
385 | max_speed = max(abs(s_max), abs(s_min)) |
---|
386 | |
---|
387 | return edgeflux, max_speed |
---|
388 | |
---|
389 | |
---|
390 | def flux_function_split(normal, ql, qr, zl, zr): |
---|
391 | from config import g, epsilon |
---|
392 | from math import sqrt |
---|
393 | from Numeric import array |
---|
394 | |
---|
395 | #print 'ql',ql |
---|
396 | |
---|
397 | #Align momentums with x-axis |
---|
398 | #q_left = rotate(ql, normal, direction = 1) |
---|
399 | #q_right = rotate(qr, normal, direction = 1) |
---|
400 | q_left = ql |
---|
401 | q_left[1] = q_left[1]*normal |
---|
402 | q_right = qr |
---|
403 | q_right[1] = q_right[1]*normal |
---|
404 | |
---|
405 | #z = (zl+zr)/2 #Take average of field values |
---|
406 | z = 0.5*(zl+zr) #Take average of field values |
---|
407 | |
---|
408 | w_left = q_left[0] #w=h+z |
---|
409 | h_left = w_left-z |
---|
410 | uh_left = q_left[1] |
---|
411 | |
---|
412 | if h_left < epsilon: |
---|
413 | u_left = 0.0 #Could have been negative |
---|
414 | h_left = 0.0 |
---|
415 | else: |
---|
416 | u_left = uh_left/h_left |
---|
417 | |
---|
418 | |
---|
419 | w_right = q_right[0] #w=h+z |
---|
420 | h_right = w_right-z |
---|
421 | uh_right = q_right[1] |
---|
422 | |
---|
423 | |
---|
424 | if h_right < epsilon: |
---|
425 | u_right = 0.0 #Could have been negative |
---|
426 | h_right = 0.0 |
---|
427 | else: |
---|
428 | u_right = uh_right/h_right |
---|
429 | |
---|
430 | #vh_left = q_left[2] |
---|
431 | #vh_right = q_right[2] |
---|
432 | |
---|
433 | #soundspeed_left = sqrt(g*h_left) |
---|
434 | #soundspeed_right = sqrt(g*h_right) |
---|
435 | |
---|
436 | #Maximal wave speed |
---|
437 | #s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
438 | s_max = max(u_left, u_right, 0) |
---|
439 | |
---|
440 | #Minimal wave speed |
---|
441 | #s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
442 | s_min = min(u_left, u_right, 0) |
---|
443 | |
---|
444 | #Flux computation |
---|
445 | |
---|
446 | #flux_left = array([u_left*h_left, |
---|
447 | # u_left*uh_left + 0.5*g*h_left*h_left]) |
---|
448 | #flux_right = array([u_right*h_right, |
---|
449 | # u_right*uh_right + 0.5*g*h_right*h_right]) |
---|
450 | flux_left = array([u_left*h_left, |
---|
451 | u_left*uh_left])# + 0.5*g*h_left*h_left]) |
---|
452 | flux_right = array([u_right*h_right, |
---|
453 | u_right*uh_right])# + 0.5*g*h_right*h_right]) |
---|
454 | |
---|
455 | denom = s_max-s_min |
---|
456 | if denom == 0.0: |
---|
457 | edgeflux = array([0.0, 0.0]) |
---|
458 | max_speed = 0.0 |
---|
459 | else: |
---|
460 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
461 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
462 | |
---|
463 | edgeflux[1] = edgeflux[1]*normal |
---|
464 | |
---|
465 | max_speed = max(abs(s_max), abs(s_min)) |
---|
466 | |
---|
467 | return edgeflux, max_speed |
---|
468 | |
---|
469 | def compute_timestep(domain): |
---|
470 | import sys |
---|
471 | from Numeric import zeros, Float |
---|
472 | |
---|
473 | N = domain.number_of_elements |
---|
474 | |
---|
475 | #Shortcuts |
---|
476 | Stage = domain.quantities['stage'] |
---|
477 | Xmom = domain.quantities['xmomentum'] |
---|
478 | Bed = domain.quantities['elevation'] |
---|
479 | |
---|
480 | stage = Stage.vertex_values |
---|
481 | xmom = Xmom.vertex_values |
---|
482 | bed = Bed.vertex_values |
---|
483 | |
---|
484 | stage_bdry = Stage.boundary_values |
---|
485 | xmom_bdry = Xmom.boundary_values |
---|
486 | |
---|
487 | flux = zeros(2, Float) #Work array for summing up fluxes |
---|
488 | ql = zeros(2, Float) |
---|
489 | qr = zeros(2, Float) |
---|
490 | |
---|
491 | #Loop |
---|
492 | timestep = float(sys.maxint) |
---|
493 | enter = True |
---|
494 | for k in range(N): |
---|
495 | |
---|
496 | flux[:] = 0. #Reset work array |
---|
497 | for i in range(2): |
---|
498 | #Quantities inside volume facing neighbour i |
---|
499 | ql = [stage[k, i], xmom[k, i]] |
---|
500 | zl = bed[k, i] |
---|
501 | |
---|
502 | #Quantities at neighbour on nearest face |
---|
503 | n = domain.neighbours[k,i] |
---|
504 | if n < 0: |
---|
505 | m = -n-1 #Convert negative flag to index |
---|
506 | qr[0] = stage_bdry[m] |
---|
507 | qr[1] = xmom_bdry[m] |
---|
508 | zr = zl #Extend bed elevation to boundary |
---|
509 | else: |
---|
510 | #m = domain.neighbour_edges[k,i] |
---|
511 | m = domain.neighbour_vertices[k,i] |
---|
512 | qr[0] = stage[n, m] |
---|
513 | qr[1] = xmom[n, m] |
---|
514 | zr = bed[n, m] |
---|
515 | |
---|
516 | |
---|
517 | #Outward pointing normal vector |
---|
518 | normal = domain.normals[k, i] |
---|
519 | |
---|
520 | if domain.split == False: |
---|
521 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
522 | elif domain.split == True: |
---|
523 | edgeflux, max_speed = flux_function_split(normal, ql, qr, zl, zr) |
---|
524 | #Update optimal_timestep |
---|
525 | try: |
---|
526 | timestep = min(timestep, domain.cfl*0.5*domain.areas[k]/max_speed) |
---|
527 | except ZeroDivisionError: |
---|
528 | pass |
---|
529 | |
---|
530 | domain.timestep = timestep |
---|
531 | |
---|
532 | def compute_fluxes(domain): |
---|
533 | """Compute all fluxes and the timestep suitable for all volumes |
---|
534 | in domain. |
---|
535 | |
---|
536 | Compute total flux for each conserved quantity using "flux_function" |
---|
537 | |
---|
538 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
539 | Resulting flux is then scaled by area and stored in |
---|
540 | explicit_update for each of the three conserved quantities |
---|
541 | stage, xmomentum and ymomentum |
---|
542 | |
---|
543 | The maximal allowable speed computed by the flux_function for each volume |
---|
544 | is converted to a timestep that must not be exceeded. The minimum of |
---|
545 | those is computed as the next overall timestep. |
---|
546 | |
---|
547 | Post conditions: |
---|
548 | domain.explicit_update is reset to computed flux values |
---|
549 | domain.timestep is set to the largest step satisfying all volumes. |
---|
550 | """ |
---|
551 | |
---|
552 | import sys |
---|
553 | from Numeric import zeros, Float |
---|
554 | |
---|
555 | N = domain.number_of_elements |
---|
556 | |
---|
557 | #Shortcuts |
---|
558 | Stage = domain.quantities['stage'] |
---|
559 | Xmom = domain.quantities['xmomentum'] |
---|
560 | # Ymom = domain.quantities['ymomentum'] |
---|
561 | Bed = domain.quantities['elevation'] |
---|
562 | |
---|
563 | #Arrays |
---|
564 | #stage = Stage.edge_values |
---|
565 | #xmom = Xmom.edge_values |
---|
566 | # ymom = Ymom.edge_values |
---|
567 | #bed = Bed.edge_values |
---|
568 | |
---|
569 | stage = Stage.vertex_values |
---|
570 | xmom = Xmom.vertex_values |
---|
571 | bed = Bed.vertex_values |
---|
572 | |
---|
573 | #print 'stage edge values', stage |
---|
574 | #print 'xmom edge values', xmom |
---|
575 | #print 'bed values', bed |
---|
576 | |
---|
577 | stage_bdry = Stage.boundary_values |
---|
578 | xmom_bdry = Xmom.boundary_values |
---|
579 | #print 'stage_bdry',stage_bdry |
---|
580 | #print 'xmom_bdry', xmom_bdry |
---|
581 | # ymom_bdry = Ymom.boundary_values |
---|
582 | |
---|
583 | # flux = zeros(3, Float) #Work array for summing up fluxes |
---|
584 | flux = zeros(2, Float) #Work array for summing up fluxes |
---|
585 | ql = zeros(2, Float) |
---|
586 | qr = zeros(2, Float) |
---|
587 | |
---|
588 | #Loop |
---|
589 | timestep = float(sys.maxint) |
---|
590 | enter = True |
---|
591 | for k in range(N): |
---|
592 | |
---|
593 | flux[:] = 0. #Reset work array |
---|
594 | #for i in range(3): |
---|
595 | for i in range(2): |
---|
596 | #Quantities inside volume facing neighbour i |
---|
597 | #ql[0] = stage[k, i] |
---|
598 | #ql[1] = xmom[k, i] |
---|
599 | ql = [stage[k, i], xmom[k, i]] |
---|
600 | zl = bed[k, i] |
---|
601 | |
---|
602 | #Quantities at neighbour on nearest face |
---|
603 | n = domain.neighbours[k,i] |
---|
604 | if n < 0: |
---|
605 | m = -n-1 #Convert negative flag to index |
---|
606 | qr[0] = stage_bdry[m] |
---|
607 | qr[1] = xmom_bdry[m] |
---|
608 | zr = zl #Extend bed elevation to boundary |
---|
609 | else: |
---|
610 | #m = domain.neighbour_edges[k,i] |
---|
611 | m = domain.neighbour_vertices[k,i] |
---|
612 | #qr = [stage[n, m], xmom[n, m], ymom[n, m]] |
---|
613 | qr[0] = stage[n, m] |
---|
614 | qr[1] = xmom[n, m] |
---|
615 | zr = bed[n, m] |
---|
616 | |
---|
617 | |
---|
618 | #Outward pointing normal vector |
---|
619 | normal = domain.normals[k, i] |
---|
620 | |
---|
621 | #Flux computation using provided function |
---|
622 | #edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
623 | #print 'ql',ql |
---|
624 | #print 'qr',qr |
---|
625 | |
---|
626 | |
---|
627 | if domain.split == False: |
---|
628 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
629 | elif domain.split == True: |
---|
630 | edgeflux, max_speed = flux_function_split(normal, ql, qr, zl, zr) |
---|
631 | #print 'edgeflux', edgeflux |
---|
632 | |
---|
633 | # THIS IS THE LINE TO DEAL WITH LEFT AND RIGHT FLUXES |
---|
634 | # flux = edgefluxleft - edgefluxright |
---|
635 | flux -= edgeflux #* domain.edgelengths[k,i] |
---|
636 | #Update optimal_timestep |
---|
637 | try: |
---|
638 | #timestep = min(timestep, 0.5*domain.radii[k]/max_speed) |
---|
639 | timestep = min(timestep, domain.cfl*0.5*domain.areas[k]/max_speed) |
---|
640 | except ZeroDivisionError: |
---|
641 | pass |
---|
642 | |
---|
643 | #Normalise by area and store for when all conserved |
---|
644 | #quantities get updated |
---|
645 | flux /= domain.areas[k] |
---|
646 | |
---|
647 | Stage.explicit_update[k] = flux[0] |
---|
648 | Xmom.explicit_update[k] = flux[1] |
---|
649 | #Ymom.explicit_update[k] = flux[2] |
---|
650 | #print "flux cell",k,flux[0] |
---|
651 | |
---|
652 | domain.timestep = timestep |
---|
653 | #print domain.quantities['stage'].centroid_values |
---|
654 | |
---|
655 | #################################### |
---|
656 | |
---|
657 | # Module functions for gradient limiting (distribute_to_vertices_and_edges) |
---|
658 | |
---|
659 | def distribute_to_vertices_and_edges(domain): |
---|
660 | """Distribution from centroids to vertices specific to the |
---|
661 | shallow water wave |
---|
662 | equation. |
---|
663 | |
---|
664 | It will ensure that h (w-z) is always non-negative even in the |
---|
665 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
666 | and deep cases. |
---|
667 | |
---|
668 | In addition, all conserved quantities get distributed as per either a |
---|
669 | constant (order==1) or a piecewise linear function (order==2). |
---|
670 | |
---|
671 | FIXME: more explanation about removal of artificial variability etc |
---|
672 | |
---|
673 | Precondition: |
---|
674 | All quantities defined at centroids and bed elevation defined at |
---|
675 | vertices. |
---|
676 | |
---|
677 | Postcondition |
---|
678 | Conserved quantities defined at vertices |
---|
679 | |
---|
680 | """ |
---|
681 | |
---|
682 | #from config import optimised_gradient_limiter |
---|
683 | |
---|
684 | #Remove very thin layers of water |
---|
685 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
686 | |
---|
687 | |
---|
688 | #Extrapolate all conserved quantities |
---|
689 | #if optimised_gradient_limiter: |
---|
690 | # #MH090605 if second order, |
---|
691 | # #perform the extrapolation and limiting on |
---|
692 | # #all of the conserved quantities |
---|
693 | |
---|
694 | # if (domain.order == 1): |
---|
695 | # for name in domain.conserved_quantities: |
---|
696 | # Q = domain.quantities[name] |
---|
697 | # Q.extrapolate_first_order() |
---|
698 | # elif domain.order == 2: |
---|
699 | # domain.extrapolate_second_order_sw() |
---|
700 | # else: |
---|
701 | # raise 'Unknown order' |
---|
702 | #else: |
---|
703 | #old code: |
---|
704 | |
---|
705 | for name in domain.conserved_quantities: |
---|
706 | Q = domain.quantities[name] |
---|
707 | if domain.order == 1: |
---|
708 | Q.extrapolate_first_order() |
---|
709 | elif domain.order == 2: |
---|
710 | #print "add extrapolate second order to shallow water" |
---|
711 | #if name != 'height': |
---|
712 | Q.extrapolate_second_order() |
---|
713 | #Q.limit() |
---|
714 | else: |
---|
715 | raise 'Unknown order' |
---|
716 | |
---|
717 | #Take bed elevation into account when water heights are small |
---|
718 | #balance_deep_and_shallow(domain) |
---|
719 | #protect_against_infinitesimal_and_negative_heights(domain) |
---|
720 | |
---|
721 | #Compute edge values by interpolation |
---|
722 | #for name in domain.conserved_quantities: |
---|
723 | # Q = domain.quantities[name] |
---|
724 | # Q.interpolate_from_vertices_to_edges() |
---|
725 | |
---|
726 | def protect_against_infinitesimal_and_negative_heights(domain): |
---|
727 | """Protect against infinitesimal heights and associated high velocities |
---|
728 | """ |
---|
729 | |
---|
730 | #Shortcuts |
---|
731 | wc = domain.quantities['stage'].centroid_values |
---|
732 | zc = domain.quantities['elevation'].centroid_values |
---|
733 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
734 | # ymomc = domain.quantities['ymomentum'].centroid_values |
---|
735 | hc = wc - zc #Water depths at centroids |
---|
736 | |
---|
737 | zv = domain.quantities['elevation'].vertex_values |
---|
738 | wv = domain.quantities['stage'].vertex_values |
---|
739 | hv = wv-zv |
---|
740 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
741 | #remove the above two lines and corresponding code below |
---|
742 | |
---|
743 | #Update |
---|
744 | for k in range(domain.number_of_elements): |
---|
745 | |
---|
746 | if hc[k] < domain.minimum_allowed_height: |
---|
747 | #Control stage |
---|
748 | if hc[k] < domain.epsilon: |
---|
749 | wc[k] = zc[k] # Contain 'lost mass' error |
---|
750 | wv[k,0] = zv[k,0] |
---|
751 | wv[k,1] = zv[k,1] |
---|
752 | |
---|
753 | xmomc[k] = 0.0 |
---|
754 | |
---|
755 | #N = domain.number_of_elements |
---|
756 | #if (k == 0) | (k==N-1): |
---|
757 | # wc[k] = zc[k] # Contain 'lost mass' error |
---|
758 | # wv[k,0] = zv[k,0] |
---|
759 | # wv[k,1] = zv[k,1] |
---|
760 | |
---|
761 | def h_limiter(domain): |
---|
762 | """Limit slopes for each volume to eliminate artificial variance |
---|
763 | introduced by e.g. second order extrapolator |
---|
764 | |
---|
765 | limit on h = w-z |
---|
766 | |
---|
767 | This limiter depends on two quantities (w,z) so it resides within |
---|
768 | this module rather than within quantity.py |
---|
769 | """ |
---|
770 | |
---|
771 | from Numeric import zeros, Float |
---|
772 | |
---|
773 | N = domain.number_of_elements |
---|
774 | beta_h = domain.beta_h |
---|
775 | |
---|
776 | #Shortcuts |
---|
777 | wc = domain.quantities['stage'].centroid_values |
---|
778 | zc = domain.quantities['elevation'].centroid_values |
---|
779 | hc = wc - zc |
---|
780 | |
---|
781 | wv = domain.quantities['stage'].vertex_values |
---|
782 | zv = domain.quantities['elevation'].vertex_values |
---|
783 | hv = wv-zv |
---|
784 | |
---|
785 | hvbar = zeros(hv.shape, Float) #h-limited values |
---|
786 | |
---|
787 | #Find min and max of this and neighbour's centroid values |
---|
788 | hmax = zeros(hc.shape, Float) |
---|
789 | hmin = zeros(hc.shape, Float) |
---|
790 | |
---|
791 | for k in range(N): |
---|
792 | hmax[k] = hmin[k] = hc[k] |
---|
793 | #for i in range(3): |
---|
794 | for i in range(2): |
---|
795 | n = domain.neighbours[k,i] |
---|
796 | if n >= 0: |
---|
797 | hn = hc[n] #Neighbour's centroid value |
---|
798 | |
---|
799 | hmin[k] = min(hmin[k], hn) |
---|
800 | hmax[k] = max(hmax[k], hn) |
---|
801 | |
---|
802 | |
---|
803 | #Diffences between centroids and maxima/minima |
---|
804 | dhmax = hmax - hc |
---|
805 | dhmin = hmin - hc |
---|
806 | |
---|
807 | #Deltas between vertex and centroid values |
---|
808 | dh = zeros(hv.shape, Float) |
---|
809 | #for i in range(3): |
---|
810 | for i in range(2): |
---|
811 | dh[:,i] = hv[:,i] - hc |
---|
812 | |
---|
813 | #Phi limiter |
---|
814 | for k in range(N): |
---|
815 | |
---|
816 | #Find the gradient limiter (phi) across vertices |
---|
817 | phi = 1.0 |
---|
818 | #for i in range(3): |
---|
819 | for i in range(2): |
---|
820 | r = 1.0 |
---|
821 | if (dh[k,i] > 0): r = dhmax[k]/dh[k,i] |
---|
822 | if (dh[k,i] < 0): r = dhmin[k]/dh[k,i] |
---|
823 | |
---|
824 | phi = min( min(r*beta_h, 1), phi ) |
---|
825 | |
---|
826 | #Then update using phi limiter |
---|
827 | #for i in range(3): |
---|
828 | for i in range(2): |
---|
829 | hvbar[k,i] = hc[k] + phi*dh[k,i] |
---|
830 | |
---|
831 | return hvbar |
---|
832 | |
---|
833 | def balance_deep_and_shallow(domain): |
---|
834 | """Compute linear combination between stage as computed by |
---|
835 | gradient-limiters limiting using w, and stage computed by |
---|
836 | gradient-limiters limiting using h (h-limiter). |
---|
837 | The former takes precedence when heights are large compared to the |
---|
838 | bed slope while the latter takes precedence when heights are |
---|
839 | relatively small. Anything in between is computed as a balanced |
---|
840 | linear combination in order to avoid numerical disturbances which |
---|
841 | would otherwise appear as a result of hard switching between |
---|
842 | modes. |
---|
843 | |
---|
844 | The h-limiter is always applied irrespective of the order. |
---|
845 | """ |
---|
846 | |
---|
847 | #Shortcuts |
---|
848 | wc = domain.quantities['stage'].centroid_values |
---|
849 | zc = domain.quantities['elevation'].centroid_values |
---|
850 | hc = wc - zc |
---|
851 | |
---|
852 | wv = domain.quantities['stage'].vertex_values |
---|
853 | zv = domain.quantities['elevation'].vertex_values |
---|
854 | hv = wv-zv |
---|
855 | |
---|
856 | #Limit h |
---|
857 | hvbar = h_limiter(domain) |
---|
858 | |
---|
859 | for k in range(domain.number_of_elements): |
---|
860 | #Compute maximal variation in bed elevation |
---|
861 | # This quantitiy is |
---|
862 | # dz = max_i abs(z_i - z_c) |
---|
863 | # and it is independent of dimension |
---|
864 | # In the 1d case zc = (z0+z1)/2 |
---|
865 | # In the 2d case zc = (z0+z1+z2)/3 |
---|
866 | |
---|
867 | dz = max(abs(zv[k,0]-zc[k]), |
---|
868 | abs(zv[k,1]-zc[k]))#, |
---|
869 | # abs(zv[k,2]-zc[k])) |
---|
870 | |
---|
871 | |
---|
872 | hmin = min( hv[k,:] ) |
---|
873 | |
---|
874 | #Create alpha in [0,1], where alpha==0 means using the h-limited |
---|
875 | #stage and alpha==1 means using the w-limited stage as |
---|
876 | #computed by the gradient limiter (both 1st or 2nd order) |
---|
877 | |
---|
878 | #If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
879 | #If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
880 | |
---|
881 | if dz > 0.0: |
---|
882 | alpha = max( min( 2*hmin/dz, 1.0), 0.0 ) |
---|
883 | else: |
---|
884 | #Flat bed |
---|
885 | alpha = 1.0 |
---|
886 | |
---|
887 | alpha = 0.0 |
---|
888 | #Let |
---|
889 | # |
---|
890 | # wvi be the w-limited stage (wvi = zvi + hvi) |
---|
891 | # wvi- be the h-limited state (wvi- = zvi + hvi-) |
---|
892 | # |
---|
893 | # |
---|
894 | #where i=0,1,2 denotes the vertex ids |
---|
895 | # |
---|
896 | #Weighted balance between w-limited and h-limited stage is |
---|
897 | # |
---|
898 | # wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) |
---|
899 | # |
---|
900 | #It follows that the updated wvi is |
---|
901 | # wvi := zvi + (1-alpha)*hvi- + alpha*hvi |
---|
902 | # |
---|
903 | # Momentum is balanced between constant and limited |
---|
904 | |
---|
905 | |
---|
906 | #for i in range(3): |
---|
907 | # wv[k,i] = zv[k,i] + hvbar[k,i] |
---|
908 | |
---|
909 | #return |
---|
910 | |
---|
911 | if alpha < 1: |
---|
912 | |
---|
913 | #for i in range(3): |
---|
914 | for i in range(2): |
---|
915 | wv[k,i] = zv[k,i] + (1.0-alpha)*hvbar[k,i] + alpha*hv[k,i] |
---|
916 | |
---|
917 | #Momentums at centroids |
---|
918 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
919 | # ymomc = domain.quantities['ymomentum'].centroid_values |
---|
920 | |
---|
921 | #Momentums at vertices |
---|
922 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
923 | # ymomv = domain.quantities['ymomentum'].vertex_values |
---|
924 | |
---|
925 | # Update momentum as a linear combination of |
---|
926 | # xmomc and ymomc (shallow) and momentum |
---|
927 | # from extrapolator xmomv and ymomv (deep). |
---|
928 | xmomv[k,:] = (1.0-alpha)*xmomc[k] + alpha*xmomv[k,:] |
---|
929 | # ymomv[k,:] = (1-alpha)*ymomc[k] + alpha*ymomv[k,:] |
---|
930 | |
---|
931 | |
---|
932 | ############################################### |
---|
933 | #Boundaries - specific to the shallow water wave equation |
---|
934 | class Reflective_boundary(Boundary): |
---|
935 | """Reflective boundary returns same conserved quantities as |
---|
936 | those present in its neighbour volume but reflected. |
---|
937 | |
---|
938 | This class is specific to the shallow water equation as it |
---|
939 | works with the momentum quantities assumed to be the second |
---|
940 | and third conserved quantities. |
---|
941 | """ |
---|
942 | |
---|
943 | def __init__(self, domain = None): |
---|
944 | Boundary.__init__(self) |
---|
945 | |
---|
946 | if domain is None: |
---|
947 | msg = 'Domain must be specified for reflective boundary' |
---|
948 | raise msg |
---|
949 | |
---|
950 | #Handy shorthands |
---|
951 | #self.stage = domain.quantities['stage'].edge_values |
---|
952 | #self.xmom = domain.quantities['xmomentum'].edge_values |
---|
953 | #self.ymom = domain.quantities['ymomentum'].edge_values |
---|
954 | self.normals = domain.normals |
---|
955 | self.stage = domain.quantities['stage'].vertex_values |
---|
956 | self.xmom = domain.quantities['xmomentum'].vertex_values |
---|
957 | |
---|
958 | from Numeric import zeros, Float |
---|
959 | #self.conserved_quantities = zeros(3, Float) |
---|
960 | self.conserved_quantities = zeros(2, Float) |
---|
961 | |
---|
962 | def __repr__(self): |
---|
963 | return 'Reflective_boundary' |
---|
964 | |
---|
965 | |
---|
966 | def evaluate(self, vol_id, edge_id): |
---|
967 | """Reflective boundaries reverses the outward momentum |
---|
968 | of the volume they serve. |
---|
969 | """ |
---|
970 | |
---|
971 | q = self.conserved_quantities |
---|
972 | q[0] = self.stage[vol_id, edge_id] |
---|
973 | q[1] = self.xmom[vol_id, edge_id] |
---|
974 | #q[2] = self.ymom[vol_id, edge_id] |
---|
975 | #normal = self.normals[vol_id, 2*edge_id:2*edge_id+2] |
---|
976 | #normal = self.normals[vol_id, 2*edge_id:2*edge_id+1] |
---|
977 | normal = self.normals[vol_id,edge_id] |
---|
978 | |
---|
979 | #r = rotate(q, normal, direction = 1) |
---|
980 | #r[1] = -r[1] |
---|
981 | #q = rotate(r, normal, direction = -1) |
---|
982 | r = q |
---|
983 | r[1] = normal*r[1] |
---|
984 | r[1] = -r[1] |
---|
985 | r[1] = normal*r[1] |
---|
986 | q = r |
---|
987 | #For start interval there is no outward momentum so do not need to |
---|
988 | #reverse direction in this case |
---|
989 | |
---|
990 | return q |
---|
991 | |
---|
992 | class Dirichlet_boundary(Boundary): |
---|
993 | """Dirichlet boundary returns constant values for the |
---|
994 | conserved quantities |
---|
995 | """ |
---|
996 | |
---|
997 | |
---|
998 | def __init__(self, conserved_quantities=None): |
---|
999 | Boundary.__init__(self) |
---|
1000 | |
---|
1001 | if conserved_quantities is None: |
---|
1002 | msg = 'Must specify one value for each conserved quantity' |
---|
1003 | raise msg |
---|
1004 | |
---|
1005 | from Numeric import array, Float |
---|
1006 | self.conserved_quantities=array(conserved_quantities).astype(Float) |
---|
1007 | |
---|
1008 | def __repr__(self): |
---|
1009 | return 'Dirichlet boundary (%s)' %self.conserved_quantities |
---|
1010 | |
---|
1011 | def evaluate(self, vol_id=None, edge_id=None): |
---|
1012 | return self.conserved_quantities |
---|
1013 | |
---|
1014 | |
---|
1015 | ######################### |
---|
1016 | #Standard forcing terms: |
---|
1017 | # |
---|
1018 | def gravity(domain): |
---|
1019 | """Apply gravitational pull in the presence of bed slope |
---|
1020 | """ |
---|
1021 | |
---|
1022 | from util import gradient |
---|
1023 | from Numeric import zeros, Float, array, sum |
---|
1024 | |
---|
1025 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
1026 | stage = domain.quantities['stage'].explicit_update |
---|
1027 | # ymom = domain.quantities['ymomentum'].explicit_update |
---|
1028 | |
---|
1029 | Stage = domain.quantities['stage'] |
---|
1030 | Elevation = domain.quantities['elevation'] |
---|
1031 | #h = Stage.edge_values - Elevation.edge_values |
---|
1032 | h = Stage.vertex_values - Elevation.vertex_values |
---|
1033 | b = Elevation.vertex_values |
---|
1034 | w = Stage.vertex_values |
---|
1035 | |
---|
1036 | x = domain.get_vertex_coordinates() |
---|
1037 | g = domain.g |
---|
1038 | |
---|
1039 | for k in range(domain.number_of_elements): |
---|
1040 | # avg_h = sum( h[k,:] )/3 |
---|
1041 | avg_h = sum( h[k,:] )/2 |
---|
1042 | |
---|
1043 | #Compute bed slope |
---|
1044 | #x0, y0, x1, y1, x2, y2 = x[k,:] |
---|
1045 | x0, x1 = x[k,:] |
---|
1046 | #z0, z1, z2 = v[k,:] |
---|
1047 | b0, b1 = b[k,:] |
---|
1048 | |
---|
1049 | w0, w1 = w[k,:] |
---|
1050 | wx = gradient(x0, x1, w0, w1) |
---|
1051 | |
---|
1052 | #zx, zy = gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2) |
---|
1053 | bx = gradient(x0, x1, b0, b1) |
---|
1054 | |
---|
1055 | #Update momentum (explicit update is reset to source values) |
---|
1056 | if domain.split == False: |
---|
1057 | xmom[k] += -g*bx*avg_h |
---|
1058 | #xmom[k] = -g*bx*avg_h |
---|
1059 | #stage[k] = 0.0 |
---|
1060 | elif domain.split == True: |
---|
1061 | xmom[k] += -g*wx*avg_h |
---|
1062 | #xmom[k] = -g*wx*avg_h |
---|
1063 | #ymom[k] += -g*zy*avg_h |
---|
1064 | |
---|
1065 | def manning_friction(domain): |
---|
1066 | """Apply (Manning) friction to water momentum |
---|
1067 | """ |
---|
1068 | |
---|
1069 | from math import sqrt |
---|
1070 | |
---|
1071 | w = domain.quantities['stage'].centroid_values |
---|
1072 | z = domain.quantities['elevation'].centroid_values |
---|
1073 | h = w-z |
---|
1074 | |
---|
1075 | uh = domain.quantities['xmomentum'].centroid_values |
---|
1076 | #vh = domain.quantities['ymomentum'].centroid_values |
---|
1077 | eta = domain.quantities['friction'].centroid_values |
---|
1078 | |
---|
1079 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
1080 | #ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
1081 | |
---|
1082 | N = domain.number_of_elements |
---|
1083 | eps = domain.minimum_allowed_height |
---|
1084 | g = domain.g |
---|
1085 | |
---|
1086 | for k in range(N): |
---|
1087 | if eta[k] >= eps: |
---|
1088 | if h[k] >= eps: |
---|
1089 | #S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
1090 | S = -g * eta[k]**2 * uh[k] |
---|
1091 | S /= h[k]**(7.0/3) |
---|
1092 | |
---|
1093 | #Update momentum |
---|
1094 | xmom_update[k] += S*uh[k] |
---|
1095 | #ymom_update[k] += S*vh[k] |
---|
1096 | |
---|
1097 | def linear_friction(domain): |
---|
1098 | """Apply linear friction to water momentum |
---|
1099 | |
---|
1100 | Assumes quantity: 'linear_friction' to be present |
---|
1101 | """ |
---|
1102 | |
---|
1103 | from math import sqrt |
---|
1104 | |
---|
1105 | w = domain.quantities['stage'].centroid_values |
---|
1106 | z = domain.quantities['elevation'].centroid_values |
---|
1107 | h = w-z |
---|
1108 | |
---|
1109 | uh = domain.quantities['xmomentum'].centroid_values |
---|
1110 | # vh = domain.quantities['ymomentum'].centroid_values |
---|
1111 | tau = domain.quantities['linear_friction'].centroid_values |
---|
1112 | |
---|
1113 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
1114 | # ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
1115 | |
---|
1116 | N = domain.number_of_elements |
---|
1117 | eps = domain.minimum_allowed_height |
---|
1118 | g = domain.g #Not necessary? Why was this added? |
---|
1119 | |
---|
1120 | for k in range(N): |
---|
1121 | if tau[k] >= eps: |
---|
1122 | if h[k] >= eps: |
---|
1123 | S = -tau[k]/h[k] |
---|
1124 | |
---|
1125 | #Update momentum |
---|
1126 | xmom_update[k] += S*uh[k] |
---|
1127 | # ymom_update[k] += S*vh[k] |
---|
1128 | |
---|
1129 | |
---|
1130 | |
---|
1131 | def check_forcefield(f): |
---|
1132 | """Check that f is either |
---|
1133 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
1134 | and that it returns an array or a list of same length |
---|
1135 | as x and y |
---|
1136 | 2: a scalar |
---|
1137 | """ |
---|
1138 | |
---|
1139 | from Numeric import ones, Float, array |
---|
1140 | |
---|
1141 | |
---|
1142 | if callable(f): |
---|
1143 | #N = 3 |
---|
1144 | N = 2 |
---|
1145 | #x = ones(3, Float) |
---|
1146 | #y = ones(3, Float) |
---|
1147 | x = ones(2, Float) |
---|
1148 | #y = ones(2, Float) |
---|
1149 | |
---|
1150 | try: |
---|
1151 | #q = f(1.0, x=x, y=y) |
---|
1152 | q = f(1.0, x=x) |
---|
1153 | except Exception, e: |
---|
1154 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
1155 | #FIXME: Reconsider this semantics |
---|
1156 | raise msg |
---|
1157 | |
---|
1158 | try: |
---|
1159 | q = array(q).astype(Float) |
---|
1160 | except: |
---|
1161 | msg = 'Return value from vector function %s could ' %f |
---|
1162 | msg += 'not be converted into a Numeric array of floats.\n' |
---|
1163 | msg += 'Specified function should return either list or array.' |
---|
1164 | raise msg |
---|
1165 | |
---|
1166 | #Is this really what we want? |
---|
1167 | msg = 'Return vector from function %s ' %f |
---|
1168 | msg += 'must have same lenght as input vectors' |
---|
1169 | assert len(q) == N, msg |
---|
1170 | |
---|
1171 | else: |
---|
1172 | try: |
---|
1173 | f = float(f) |
---|
1174 | except: |
---|
1175 | msg = 'Force field %s must be either a scalar' %f |
---|
1176 | msg += ' or a vector function' |
---|
1177 | raise msg |
---|
1178 | return f |
---|
1179 | |
---|
1180 | class Wind_stress: |
---|
1181 | """Apply wind stress to water momentum in terms of |
---|
1182 | wind speed [m/s] and wind direction [degrees] |
---|
1183 | """ |
---|
1184 | |
---|
1185 | def __init__(self, *args, **kwargs): |
---|
1186 | """Initialise windfield from wind speed s [m/s] |
---|
1187 | and wind direction phi [degrees] |
---|
1188 | |
---|
1189 | Inputs v and phi can be either scalars or Python functions, e.g. |
---|
1190 | |
---|
1191 | W = Wind_stress(10, 178) |
---|
1192 | |
---|
1193 | #FIXME - 'normal' degrees are assumed for now, i.e. the |
---|
1194 | vector (1,0) has zero degrees. |
---|
1195 | We may need to convert from 'compass' degrees later on and also |
---|
1196 | map from True north to grid north. |
---|
1197 | |
---|
1198 | Arguments can also be Python functions of t,x,y as in |
---|
1199 | |
---|
1200 | def speed(t,x,y): |
---|
1201 | ... |
---|
1202 | return s |
---|
1203 | |
---|
1204 | def angle(t,x,y): |
---|
1205 | ... |
---|
1206 | return phi |
---|
1207 | |
---|
1208 | where x and y are vectors. |
---|
1209 | |
---|
1210 | and then pass the functions in |
---|
1211 | |
---|
1212 | W = Wind_stress(speed, angle) |
---|
1213 | |
---|
1214 | The instantiated object W can be appended to the list of |
---|
1215 | forcing_terms as in |
---|
1216 | |
---|
1217 | Alternatively, one vector valued function for (speed, angle) |
---|
1218 | can be applied, providing both quantities simultaneously. |
---|
1219 | As in |
---|
1220 | W = Wind_stress(F), where returns (speed, angle) for each t. |
---|
1221 | |
---|
1222 | domain.forcing_terms.append(W) |
---|
1223 | """ |
---|
1224 | |
---|
1225 | from config import rho_a, rho_w, eta_w |
---|
1226 | from Numeric import array, Float |
---|
1227 | |
---|
1228 | if len(args) == 2: |
---|
1229 | s = args[0] |
---|
1230 | phi = args[1] |
---|
1231 | elif len(args) == 1: |
---|
1232 | #Assume vector function returning (s, phi)(t,x,y) |
---|
1233 | vector_function = args[0] |
---|
1234 | #s = lambda t,x,y: vector_function(t,x=x,y=y)[0] |
---|
1235 | #phi = lambda t,x,y: vector_function(t,x=x,y=y)[1] |
---|
1236 | s = lambda t,x: vector_function(t,x=x)[0] |
---|
1237 | phi = lambda t,x: vector_function(t,x=x)[1] |
---|
1238 | else: |
---|
1239 | #Assume info is in 2 keyword arguments |
---|
1240 | |
---|
1241 | if len(kwargs) == 2: |
---|
1242 | s = kwargs['s'] |
---|
1243 | phi = kwargs['phi'] |
---|
1244 | else: |
---|
1245 | raise 'Assumes two keyword arguments: s=..., phi=....' |
---|
1246 | |
---|
1247 | print 'phi', phi |
---|
1248 | self.speed = check_forcefield(s) |
---|
1249 | self.phi = check_forcefield(phi) |
---|
1250 | |
---|
1251 | self.const = eta_w*rho_a/rho_w |
---|
1252 | |
---|
1253 | |
---|
1254 | def __call__(self, domain): |
---|
1255 | """Evaluate windfield based on values found in domain |
---|
1256 | """ |
---|
1257 | |
---|
1258 | from math import pi, cos, sin, sqrt |
---|
1259 | from Numeric import Float, ones, ArrayType |
---|
1260 | |
---|
1261 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
1262 | #ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
1263 | |
---|
1264 | N = domain.number_of_elements |
---|
1265 | t = domain.time |
---|
1266 | |
---|
1267 | if callable(self.speed): |
---|
1268 | xc = domain.get_centroid_coordinates() |
---|
1269 | #s_vec = self.speed(t, xc[:,0], xc[:,1]) |
---|
1270 | s_vec = self.speed(t, xc) |
---|
1271 | else: |
---|
1272 | #Assume s is a scalar |
---|
1273 | |
---|
1274 | try: |
---|
1275 | s_vec = self.speed * ones(N, Float) |
---|
1276 | except: |
---|
1277 | msg = 'Speed must be either callable or a scalar: %s' %self.s |
---|
1278 | raise msg |
---|
1279 | |
---|
1280 | |
---|
1281 | if callable(self.phi): |
---|
1282 | xc = domain.get_centroid_coordinates() |
---|
1283 | #phi_vec = self.phi(t, xc[:,0], xc[:,1]) |
---|
1284 | phi_vec = self.phi(t, xc) |
---|
1285 | else: |
---|
1286 | #Assume phi is a scalar |
---|
1287 | |
---|
1288 | try: |
---|
1289 | phi_vec = self.phi * ones(N, Float) |
---|
1290 | except: |
---|
1291 | msg = 'Angle must be either callable or a scalar: %s' %self.phi |
---|
1292 | raise msg |
---|
1293 | |
---|
1294 | #assign_windfield_values(xmom_update, ymom_update, |
---|
1295 | # s_vec, phi_vec, self.const) |
---|
1296 | assign_windfield_values(xmom_update, s_vec, phi_vec, self.const) |
---|
1297 | |
---|
1298 | |
---|
1299 | #def assign_windfield_values(xmom_update, ymom_update, |
---|
1300 | # s_vec, phi_vec, const): |
---|
1301 | def assign_windfield_values(xmom_update, s_vec, phi_vec, const): |
---|
1302 | """Python version of assigning wind field to update vectors. |
---|
1303 | A c version also exists (for speed) |
---|
1304 | """ |
---|
1305 | from math import pi, cos, sin, sqrt |
---|
1306 | |
---|
1307 | N = len(s_vec) |
---|
1308 | for k in range(N): |
---|
1309 | s = s_vec[k] |
---|
1310 | phi = phi_vec[k] |
---|
1311 | |
---|
1312 | #Convert to radians |
---|
1313 | phi = phi*pi/180 |
---|
1314 | |
---|
1315 | #Compute velocity vector (u, v) |
---|
1316 | u = s*cos(phi) |
---|
1317 | v = s*sin(phi) |
---|
1318 | |
---|
1319 | #Compute wind stress |
---|
1320 | #S = const * sqrt(u**2 + v**2) |
---|
1321 | S = const * u |
---|
1322 | xmom_update[k] += S*u |
---|
1323 | #ymom_update[k] += S*v |
---|