[4959] | 1 | import os |
---|
| 2 | from math import sqrt, pi |
---|
| 3 | from shallow_water_1d import * |
---|
| 4 | from Numeric import allclose, array, zeros, ones, Float, take, sqrt |
---|
| 5 | from config import g, epsilon |
---|
| 6 | from analytic_dam import AnalyticDam |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | h0 = 5.0 |
---|
| 10 | h1 = 10.0 |
---|
| 11 | |
---|
| 12 | analytical_sol = AnalyticDam(h0, h1) |
---|
| 13 | |
---|
| 14 | def newLinePlot(title='Simple Plot'): |
---|
| 15 | import Gnuplot |
---|
| 16 | g = Gnuplot.Gnuplot(persist=1) |
---|
| 17 | g.title(title) |
---|
| 18 | g('set data style linespoints') |
---|
| 19 | g.xlabel('x') |
---|
| 20 | g.ylabel('y') |
---|
| 21 | return g |
---|
| 22 | |
---|
| 23 | def linePlot(g,x1,y1,x2,y2): |
---|
| 24 | import Gnuplot |
---|
| 25 | plot1 = Gnuplot.PlotItems.Data(x1.flat,y1.flat,with="linespoints") |
---|
| 26 | plot2 = Gnuplot.PlotItems.Data(x2.flat,y2.flat, with="lines 3") |
---|
| 27 | g.plot(plot1,plot2) |
---|
| 28 | #g.plot(Gnuplot.PlotItems.Data(x1.flat,y1.flat),with="linespoints") |
---|
| 29 | #g.plot(Gnuplot.PlotItems.Data(x2.flat,y2.flat), with="lines") |
---|
| 30 | |
---|
| 31 | def stage(x): |
---|
| 32 | y = zeros(len(x),Float) |
---|
| 33 | for i in range(len(x)): |
---|
| 34 | if x[i]<=1000.0: |
---|
| 35 | y[i] = h1 |
---|
| 36 | else: |
---|
| 37 | y[i] = h0 |
---|
| 38 | return y |
---|
| 39 | |
---|
| 40 | |
---|
| 41 | import time |
---|
| 42 | finaltime = 30.0 |
---|
| 43 | yieldstep = finaltime |
---|
| 44 | |
---|
| 45 | L = 2000.0 # Length of channel (m) |
---|
| 46 | #number_of_cells = [25,50,100,200,400,800,1600,3200,6400,12800,25600] |
---|
| 47 | number_of_cells = [20] |
---|
| 48 | h_error = zeros(len(number_of_cells),Float) |
---|
| 49 | uh_error = zeros(len(number_of_cells),Float) |
---|
| 50 | k = 0 |
---|
| 51 | for i in range(len(number_of_cells)): |
---|
| 52 | N = int(number_of_cells[i]) |
---|
| 53 | print "Evaluating domain with",N,"cells" |
---|
| 54 | cell_len = L/N # Origin = 0.0 |
---|
| 55 | points = zeros(N+1,Float) |
---|
| 56 | for j in range(N+1): |
---|
| 57 | points[j] = j*cell_len |
---|
| 58 | domain = Domain(points) |
---|
| 59 | domain.set_quantity('stage', stage) |
---|
| 60 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
| 61 | domain.default_order = 2 |
---|
| 62 | domain.default_time_order = 2 |
---|
| 63 | print "time order", domain.default_time_order |
---|
| 64 | domain.cfl = 1.0 |
---|
| 65 | domain.beta = 1.0 |
---|
| 66 | domain.limiter = "steve_minmod" |
---|
| 67 | #domain.limiter = "superbee" |
---|
| 68 | init_integral = domain.quantities['stage'].get_integral() |
---|
| 69 | t0 = time.time() |
---|
| 70 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
| 71 | pass |
---|
| 72 | N = float(N) |
---|
| 73 | assert(allclose(domain.quantities['stage'].get_integral(),init_integral)) |
---|
| 74 | StageC = domain.quantities['stage'].centroid_values |
---|
| 75 | XmomC = domain.quantities['xmomentum'].centroid_values |
---|
| 76 | C = domain.centroids |
---|
| 77 | h, uh = analytical_sol(C,domain.time) |
---|
| 78 | h_error[k] = 1.0/(N)*sum(abs(h-StageC)) |
---|
| 79 | uh_error[k] = 1.0/(N)*sum(abs(uh-XmomC)) |
---|
| 80 | print "h_error %.10f" %(h_error[k]) |
---|
| 81 | print "uh_error %.10f"% (uh_error[k]) |
---|
| 82 | k = k+1 |
---|
| 83 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
| 84 | X = domain.vertices |
---|
| 85 | StageQ = domain.quantities['stage'].vertex_values |
---|
| 86 | XmomQ = domain.quantities['xmomentum'].vertex_values |
---|
| 87 | h, uh = analytical_sol(X.flat,domain.time) |
---|
| 88 | from pylab import plot,title,xlabel,ylabel,legend,savefig,show,hold,subplot#,rc |
---|
| 89 | #rc('text', usetex=True) |
---|
| 90 | hold(False) |
---|
| 91 | plot1 = subplot(211) |
---|
| 92 | plot(X,h,X,StageQ) |
---|
| 93 | plot1.set_ylim([4,11]) |
---|
| 94 | #title('Free Surface Elevation of a Dry Dam-Break') |
---|
| 95 | #ylabel('Stage (m)') |
---|
| 96 | #legend(('Analytical Solution', 'Numerical Solution'), |
---|
| 97 | # 'upper right', shadow=True) |
---|
| 98 | #plot2 = subplot(212) |
---|
| 99 | #plot(X,uh,X,XmomQ) |
---|
| 100 | #plot2.set_ylim([-1,25]) |
---|
| 101 | #title('Xmomentum Profile of a Dry Dam-Break') |
---|
| 102 | #xlabel('x (m)') |
---|
| 103 | #ylabel(r'X-momentum ($m^2/s$)') |
---|
| 104 | #legend(('Analytical Solution', 'Numerical Solution'), |
---|
| 105 | # 'upper right', shadow=True) |
---|
| 106 | #filename = "subcritical_flow_s2_t2_" |
---|
| 107 | #filename += domain.limiter |
---|
| 108 | #filename += str(number_of_cells[i]) |
---|
| 109 | #filename += ".eps" |
---|
| 110 | #savefig(filename) |
---|
| 111 | show() |
---|
| 112 | |
---|
| 113 | print "Error in height", h_error |
---|
| 114 | print "Error in xmom", uh_error |
---|
| 115 | |
---|