1 | """Class Quantity - Implements values at each 1d element |
---|
2 | |
---|
3 | To create: |
---|
4 | |
---|
5 | Quantity(domain, vertex_values) |
---|
6 | |
---|
7 | domain: Associated domain structure. Required. |
---|
8 | |
---|
9 | vertex_values: N x 2 array of values at each vertex for each element. |
---|
10 | Default None |
---|
11 | |
---|
12 | If vertex_values are None Create array of zeros compatible with domain. |
---|
13 | Otherwise check that it is compatible with dimenions of domain. |
---|
14 | Otherwise raise an exception |
---|
15 | """ |
---|
16 | |
---|
17 | |
---|
18 | |
---|
19 | class Quantity: |
---|
20 | |
---|
21 | |
---|
22 | def __init__(self, domain, vertex_values=None): |
---|
23 | #Initialise Quantity using optional vertex values. |
---|
24 | |
---|
25 | from domain import Domain |
---|
26 | from Numeric import array, zeros, Float |
---|
27 | |
---|
28 | msg = 'First argument in Quantity.__init__ ' |
---|
29 | msg += 'must be of class Domain (or a subclass thereof)' |
---|
30 | assert isinstance(domain, Domain), msg |
---|
31 | |
---|
32 | if vertex_values is None: |
---|
33 | N = domain.number_of_elements |
---|
34 | self.vertex_values = zeros((N, 2), Float) |
---|
35 | else: |
---|
36 | self.vertex_values = array(vertex_values, Float) |
---|
37 | |
---|
38 | N, V = self.vertex_values.shape |
---|
39 | assert V == 2,\ |
---|
40 | 'Two vertex values per element must be specified' |
---|
41 | |
---|
42 | |
---|
43 | msg = 'Number of vertex values (%d) must be consistent with'\ |
---|
44 | %N |
---|
45 | msg += 'number of elements in specified domain (%d).'\ |
---|
46 | %domain.number_of_elements |
---|
47 | |
---|
48 | assert N == domain.number_of_elements, msg |
---|
49 | |
---|
50 | self.domain = domain |
---|
51 | |
---|
52 | #Allocate space for other quantities |
---|
53 | self.centroid_values = zeros(N, Float) |
---|
54 | self.centroid_backup_values = zeros(N, Float) |
---|
55 | #self.edge_values = zeros((N, 2), Float) |
---|
56 | #edge values are values of the ends of each interval |
---|
57 | |
---|
58 | #Intialise centroid values |
---|
59 | self.interpolate() |
---|
60 | |
---|
61 | |
---|
62 | from Numeric import zeros, Float |
---|
63 | |
---|
64 | #Allocate space for boundary values |
---|
65 | #L = len(domain.boundary) |
---|
66 | self.boundary_values = zeros(2, Float) #assumes no parrellism |
---|
67 | |
---|
68 | #Allocate space for updates of conserved quantities by |
---|
69 | #flux calculations and forcing functions |
---|
70 | |
---|
71 | N = domain.number_of_elements |
---|
72 | self.explicit_update = zeros(N, Float ) |
---|
73 | self.semi_implicit_update = zeros(N, Float ) |
---|
74 | |
---|
75 | self.gradients = zeros(N, Float) |
---|
76 | self.qmax = zeros(self.centroid_values.shape, Float) |
---|
77 | self.qmin = zeros(self.centroid_values.shape, Float) |
---|
78 | |
---|
79 | self.beta = domain.beta |
---|
80 | |
---|
81 | |
---|
82 | def __len__(self): |
---|
83 | """ |
---|
84 | Returns number of intervals. |
---|
85 | """ |
---|
86 | return self.centroid_values.shape[0] |
---|
87 | |
---|
88 | def interpolate(self): |
---|
89 | """ |
---|
90 | Compute interpolated values at centroid |
---|
91 | Pre-condition: vertex_values have been set |
---|
92 | """ |
---|
93 | |
---|
94 | N = self.vertex_values.shape[0] |
---|
95 | for i in range(N): |
---|
96 | v0 = self.vertex_values[i, 0] |
---|
97 | v1 = self.vertex_values[i, 1] |
---|
98 | |
---|
99 | self.centroid_values[i] = (v0 + v1)/2.0 |
---|
100 | |
---|
101 | def set_values(self, X, location='vertices'): |
---|
102 | """Set values for quantity |
---|
103 | |
---|
104 | X: Compatible list, Numeric array (see below), constant or function |
---|
105 | location: Where values are to be stored. |
---|
106 | Permissible options are: vertices, centroid |
---|
107 | Default is "vertices" |
---|
108 | |
---|
109 | In case of location == 'centroid' the dimension values must |
---|
110 | be a list of a Numerical array of length N, N being the number |
---|
111 | of elements in the mesh. Otherwise it must be of dimension Nx2 |
---|
112 | |
---|
113 | The values will be stored in elements following their |
---|
114 | internal ordering. |
---|
115 | |
---|
116 | If values are described a function, it will be evaluated at specified points |
---|
117 | |
---|
118 | If selected location is vertices, values for centroid and edges |
---|
119 | will be assigned interpolated values. |
---|
120 | In any other case, only values for the specified locations |
---|
121 | will be assigned and the others will be left undefined. |
---|
122 | """ |
---|
123 | |
---|
124 | if location not in ['vertices', 'centroids']: |
---|
125 | msg = 'Invalid location: %s, (possible choices vertices, centroids)' %location |
---|
126 | raise msg |
---|
127 | |
---|
128 | if X is None: |
---|
129 | msg = 'Given values are None' |
---|
130 | raise msg |
---|
131 | |
---|
132 | import types |
---|
133 | |
---|
134 | if callable(X): |
---|
135 | #Use function specific method |
---|
136 | self.set_function_values(X, location) |
---|
137 | elif type(X) in [types.FloatType, types.IntType, types.LongType]: |
---|
138 | if location == 'centroids': |
---|
139 | self.centroid_values[:] = X |
---|
140 | else: |
---|
141 | self.vertex_values[:] = X |
---|
142 | |
---|
143 | else: |
---|
144 | #Use array specific method |
---|
145 | self.set_array_values(X, location) |
---|
146 | |
---|
147 | if location == 'vertices': |
---|
148 | #Intialise centroid and edge values |
---|
149 | self.interpolate() |
---|
150 | |
---|
151 | |
---|
152 | |
---|
153 | |
---|
154 | |
---|
155 | def set_function_values(self, f, location='vertices'): |
---|
156 | """Set values for quantity using specified function |
---|
157 | |
---|
158 | f: x -> z Function where x and z are arrays |
---|
159 | location: Where values are to be stored. |
---|
160 | Permissible options are: vertices, centroid |
---|
161 | Default is "vertices" |
---|
162 | """ |
---|
163 | |
---|
164 | if location == 'centroids': |
---|
165 | |
---|
166 | P = self.domain.centroids |
---|
167 | self.set_values(f(P), location) |
---|
168 | else: |
---|
169 | #Vertices |
---|
170 | P = self.domain.get_vertices() |
---|
171 | |
---|
172 | for i in range(2): |
---|
173 | self.vertex_values[:,i] = f(P[:,i]) |
---|
174 | |
---|
175 | def set_array_values(self, values, location='vertices'): |
---|
176 | """Set values for quantity |
---|
177 | |
---|
178 | values: Numeric array |
---|
179 | location: Where values are to be stored. |
---|
180 | Permissible options are: vertices, centroid, edges |
---|
181 | Default is "vertices" |
---|
182 | |
---|
183 | In case of location == 'centroid' the dimension values must |
---|
184 | be a list of a Numerical array of length N, N being the number |
---|
185 | of elements in the mesh. Otherwise it must be of dimension Nx2 |
---|
186 | |
---|
187 | The values will be stored in elements following their |
---|
188 | internal ordering. |
---|
189 | |
---|
190 | If selected location is vertices, values for centroid |
---|
191 | will be assigned interpolated values. |
---|
192 | In any other case, only values for the specified locations |
---|
193 | will be assigned and the others will be left undefined. |
---|
194 | """ |
---|
195 | |
---|
196 | from Numeric import array, Float |
---|
197 | |
---|
198 | values = array(values).astype(Float) |
---|
199 | |
---|
200 | N = self.centroid_values.shape[0] |
---|
201 | |
---|
202 | msg = 'Number of values must match number of elements' |
---|
203 | assert values.shape[0] == N, msg |
---|
204 | |
---|
205 | if location == 'centroids': |
---|
206 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
207 | self.centroid_values = values |
---|
208 | #elif location == 'edges': |
---|
209 | # assert len(values.shape) == 2, 'Values array must be 2d' |
---|
210 | # msg = 'Array must be N x 2' |
---|
211 | # self.edge_values = values |
---|
212 | else: |
---|
213 | assert len(values.shape) == 2, 'Values array must be 2d' |
---|
214 | msg = 'Array must be N x 2' |
---|
215 | assert values.shape[1] == 2, msg |
---|
216 | |
---|
217 | self.vertex_values = values |
---|
218 | |
---|
219 | |
---|
220 | def get_values(self, location='vertices', indices = None): |
---|
221 | """get values for quantity |
---|
222 | |
---|
223 | return X, Compatible list, Numeric array (see below) |
---|
224 | location: Where values are to be stored. |
---|
225 | Permissible options are: vertices, centroid |
---|
226 | and unique vertices. Default is 'vertices' |
---|
227 | |
---|
228 | In case of location == 'centroids' the dimension values must |
---|
229 | be a list of a Numerical array of length N, N being the number |
---|
230 | of elements. Otherwise it must be of dimension Nx3 |
---|
231 | |
---|
232 | The returned values with be a list the length of indices |
---|
233 | (N if indices = None). Each value will be a list of the three |
---|
234 | vertex values for this quantity. |
---|
235 | |
---|
236 | Indices is the set of element ids that the operation applies to. |
---|
237 | |
---|
238 | """ |
---|
239 | from Numeric import take |
---|
240 | |
---|
241 | if location not in ['vertices', 'centroids', 'unique vertices']: |
---|
242 | msg = 'Invalid location: %s' %location |
---|
243 | raise msg |
---|
244 | |
---|
245 | import types, Numeric |
---|
246 | assert type(indices) in [types.ListType, types.NoneType, |
---|
247 | Numeric.ArrayType],\ |
---|
248 | 'Indices must be a list or None' |
---|
249 | |
---|
250 | if location == 'centroids': |
---|
251 | if (indices == None): |
---|
252 | indices = range(len(self)) |
---|
253 | return take(self.centroid_values,indices) |
---|
254 | elif location == 'unique vertices': |
---|
255 | if (indices == None): |
---|
256 | indices=range(self.domain.coordinates.shape[0]) |
---|
257 | vert_values = [] |
---|
258 | #Go through list of unique vertices |
---|
259 | for unique_vert_id in indices: |
---|
260 | cells = self.domain.vertexlist[unique_vert_id] |
---|
261 | |
---|
262 | #In case there are unused points |
---|
263 | if cells is None: |
---|
264 | msg = 'Unique vertex not associated with cells' |
---|
265 | raise msg |
---|
266 | |
---|
267 | # Go through all cells, vertex pairs |
---|
268 | # Average the values |
---|
269 | sum = 0 |
---|
270 | for cell_id, vertex_id in cells: |
---|
271 | sum += self.vertex_values[cell_id, vertex_id] |
---|
272 | vert_values.append(sum/len(cells)) |
---|
273 | return Numeric.array(vert_values) |
---|
274 | else: |
---|
275 | if (indices == None): |
---|
276 | indices = range(len(self)) |
---|
277 | return take(self.vertex_values,indices) |
---|
278 | |
---|
279 | |
---|
280 | def get_vertex_values(self, |
---|
281 | x=True, |
---|
282 | smooth = None, |
---|
283 | precision = None, |
---|
284 | reduction = None): |
---|
285 | """Return vertex values like an OBJ format |
---|
286 | |
---|
287 | The vertex values are returned as one sequence in the 1D float array A. |
---|
288 | If requested the coordinates will be returned in 1D arrays X. |
---|
289 | |
---|
290 | The connectivity is represented as an integer array, V, of dimension |
---|
291 | M x 2, where M is the number of volumes. Each row has two indices |
---|
292 | into the X, A arrays defining the element. |
---|
293 | |
---|
294 | if smooth is True, vertex values corresponding to one common |
---|
295 | coordinate set will be smoothed according to the given |
---|
296 | reduction operator. In this case vertex coordinates will be |
---|
297 | de-duplicated. |
---|
298 | |
---|
299 | If no smoothings is required, vertex coordinates and values will |
---|
300 | be aggregated as a concatenation of values at |
---|
301 | vertices 0, vertices 1 |
---|
302 | |
---|
303 | |
---|
304 | Calling convention |
---|
305 | if x is True: |
---|
306 | X,A,V = get_vertex_values |
---|
307 | else: |
---|
308 | A,V = get_vertex_values |
---|
309 | |
---|
310 | """ |
---|
311 | |
---|
312 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
313 | |
---|
314 | |
---|
315 | if smooth is None: |
---|
316 | smooth = self.domain.smooth |
---|
317 | |
---|
318 | if precision is None: |
---|
319 | precision = Float |
---|
320 | |
---|
321 | if reduction is None: |
---|
322 | reduction = self.domain.reduction |
---|
323 | |
---|
324 | #Create connectivity |
---|
325 | |
---|
326 | if smooth == True: |
---|
327 | |
---|
328 | V = self.domain.get_vertices() |
---|
329 | N = len(self.domain.vertexlist) |
---|
330 | #N = len(self.domain.vertices) |
---|
331 | A = zeros(N, precision) |
---|
332 | |
---|
333 | #Smoothing loop |
---|
334 | for k in range(N): |
---|
335 | L = self.domain.vertexlist[k] |
---|
336 | #L = self.domain.vertices[k] |
---|
337 | |
---|
338 | #Go through all triangle, vertex pairs |
---|
339 | #contributing to vertex k and register vertex value |
---|
340 | |
---|
341 | if L is None: continue #In case there are unused points |
---|
342 | |
---|
343 | contributions = [] |
---|
344 | for volume_id, vertex_id in L: |
---|
345 | v = self.vertex_values[volume_id, vertex_id] |
---|
346 | contributions.append(v) |
---|
347 | |
---|
348 | A[k] = reduction(contributions) |
---|
349 | |
---|
350 | if x is True: |
---|
351 | #X = self.domain.coordinates[:,0].astype(precision) |
---|
352 | X = self.domain.coordinates[:].astype(precision) |
---|
353 | #Y = self.domain.coordinates[:,1].astype(precision) |
---|
354 | |
---|
355 | #return X, Y, A, V |
---|
356 | return X, A, V |
---|
357 | |
---|
358 | #else: |
---|
359 | return A, V |
---|
360 | else: |
---|
361 | #Don't smooth |
---|
362 | #obj machinery moved to general_mesh |
---|
363 | |
---|
364 | # Create a V like [[0 1 2], [3 4 5]....[3*m-2 3*m-1 3*m]] |
---|
365 | # These vert_id's will relate to the verts created below |
---|
366 | #m = len(self.domain) #Number of volumes |
---|
367 | #M = 3*m #Total number of unique vertices |
---|
368 | #V = reshape(array(range(M)).astype(Int), (m,3)) |
---|
369 | |
---|
370 | #V = self.domain.get_triangles(obj=True) |
---|
371 | V = self.domain.get_vertices |
---|
372 | #FIXME use get_vertices, when ready |
---|
373 | |
---|
374 | A = self.vertex_values.flat |
---|
375 | |
---|
376 | #Do vertex coordinates |
---|
377 | if x is True: |
---|
378 | X = self.domain.get_vertex_coordinates() |
---|
379 | |
---|
380 | #X = C[:,0:6:2].copy() |
---|
381 | #Y = C[:,1:6:2].copy() |
---|
382 | |
---|
383 | return X.flat, A, V |
---|
384 | else: |
---|
385 | return A, V |
---|
386 | |
---|
387 | def get_integral(self): |
---|
388 | """Compute the integral of quantity across entire domain |
---|
389 | """ |
---|
390 | integral = 0 |
---|
391 | for k in range(self.domain.number_of_elements): |
---|
392 | area = self.domain.areas[k] |
---|
393 | qc = self.centroid_values[k] |
---|
394 | integral += qc*area |
---|
395 | |
---|
396 | return integral |
---|
397 | |
---|
398 | |
---|
399 | def update(self, timestep): |
---|
400 | """Update centroid values based on values stored in |
---|
401 | explicit_update and semi_implicit_update as well as given timestep |
---|
402 | """ |
---|
403 | |
---|
404 | from Numeric import sum, equal, ones, Float |
---|
405 | |
---|
406 | N = self.centroid_values.shape[0] |
---|
407 | |
---|
408 | #Explicit updates |
---|
409 | self.centroid_values += timestep*self.explicit_update |
---|
410 | |
---|
411 | #Semi implicit updates |
---|
412 | denominator = ones(N, Float)-timestep*self.semi_implicit_update |
---|
413 | |
---|
414 | if sum(equal(denominator, 0.0)) > 0.0: |
---|
415 | msg = 'Zero division in semi implicit update. Call Stephen :-)' |
---|
416 | raise msg |
---|
417 | else: |
---|
418 | #Update conserved_quantities from semi implicit updates |
---|
419 | self.centroid_values /= denominator |
---|
420 | |
---|
421 | |
---|
422 | def compute_gradients(self): |
---|
423 | """Compute gradients of piecewise linear function defined by centroids of |
---|
424 | neighbouring volumes. |
---|
425 | """ |
---|
426 | |
---|
427 | #print 'compute_gradient' |
---|
428 | |
---|
429 | from Numeric import array, zeros, Float |
---|
430 | |
---|
431 | N = self.centroid_values.shape[0] |
---|
432 | |
---|
433 | |
---|
434 | G = self.gradients |
---|
435 | Q = self.centroid_values |
---|
436 | X = self.domain.centroids |
---|
437 | |
---|
438 | for k in range(N): |
---|
439 | |
---|
440 | # first and last elements have boundaries |
---|
441 | |
---|
442 | if k == 0: |
---|
443 | |
---|
444 | #Get data |
---|
445 | k0 = k |
---|
446 | k1 = k+1 |
---|
447 | k2 = k+2 |
---|
448 | |
---|
449 | q0 = Q[k0] |
---|
450 | q1 = Q[k1] |
---|
451 | q2 = Q[k2] |
---|
452 | |
---|
453 | x0 = X[k0] #V0 centroid |
---|
454 | x1 = X[k1] #V1 centroid |
---|
455 | x2 = X[k2] |
---|
456 | |
---|
457 | #Gradient |
---|
458 | #G[k] = (q1 - q0)/(x1 - x0) |
---|
459 | |
---|
460 | G[k] = (q1 - q0)*(x2 - x0)*(x2 - x0) - (q2 - q0)*(x1 - x0)*(x1 - x0) |
---|
461 | G[k] /= (x1 - x0)*(x2 - x0)*(x2 - x1) |
---|
462 | |
---|
463 | elif k == N-1: |
---|
464 | |
---|
465 | #Get data |
---|
466 | k0 = k |
---|
467 | k1 = k-1 |
---|
468 | k2 = k-2 |
---|
469 | |
---|
470 | q0 = Q[k0] |
---|
471 | q1 = Q[k1] |
---|
472 | q2 = Q[k2] |
---|
473 | |
---|
474 | x0 = X[k0] #V0 centroid |
---|
475 | x1 = X[k1] #V1 centroid |
---|
476 | x2 = X[k2] |
---|
477 | |
---|
478 | #Gradient |
---|
479 | #G[k] = (q1 - q0)/(x1 - x0) |
---|
480 | |
---|
481 | G[k] = (q1 - q0)*(x2 - x0)*(x2 - x0) - (q2 - q0)*(x1 - x0)*(x1 - x0) |
---|
482 | G[k] /= (x1 - x0)*(x2 - x0)*(x2 - x1) |
---|
483 | |
---|
484 | ## q0 = Q[k0] |
---|
485 | ## q1 = Q[k1] |
---|
486 | ## |
---|
487 | ## x0 = X[k0] #V0 centroid |
---|
488 | ## x1 = X[k1] #V1 centroid |
---|
489 | ## |
---|
490 | ## #Gradient |
---|
491 | ## G[k] = (q1 - q0)/(x1 - x0) |
---|
492 | |
---|
493 | else: |
---|
494 | #Interior Volume (2 neighbours) |
---|
495 | |
---|
496 | #Get data |
---|
497 | k0 = k-1 |
---|
498 | k2 = k+1 |
---|
499 | |
---|
500 | q0 = Q[k0] |
---|
501 | q1 = Q[k] |
---|
502 | q2 = Q[k2] |
---|
503 | |
---|
504 | x0 = X[k0] #V0 centroid |
---|
505 | x1 = X[k] #V1 centroid (Self) |
---|
506 | x2 = X[k2] #V2 centroid |
---|
507 | |
---|
508 | #Gradient |
---|
509 | #G[k] = (q2-q0)/(x2-x0) |
---|
510 | G[k] = ((q0-q1)/(x0-x1)*(x2-x1) - (q2-q1)/(x2-x1)*(x0-x1))/(x2-x0) |
---|
511 | |
---|
512 | |
---|
513 | def compute_minmod_gradients(self): |
---|
514 | """Compute gradients of piecewise linear function defined by centroids of |
---|
515 | neighbouring volumes. |
---|
516 | """ |
---|
517 | |
---|
518 | #print 'compute_minmod_gradients' |
---|
519 | |
---|
520 | from Numeric import array, zeros, Float,sign |
---|
521 | |
---|
522 | def xmin(a,b): |
---|
523 | return 0.5*(sign(a)+sign(b))*min(abs(a),abs(b)) |
---|
524 | |
---|
525 | def xmic(t,a,b): |
---|
526 | return xmin(t*xmin(a,b), 0.50*(a+b) ) |
---|
527 | |
---|
528 | |
---|
529 | |
---|
530 | N = self.centroid_values.shape[0] |
---|
531 | |
---|
532 | |
---|
533 | G = self.gradients |
---|
534 | Q = self.centroid_values |
---|
535 | X = self.domain.centroids |
---|
536 | |
---|
537 | for k in range(N): |
---|
538 | |
---|
539 | # first and last elements have boundaries |
---|
540 | |
---|
541 | if k == 0: |
---|
542 | |
---|
543 | #Get data |
---|
544 | k0 = k |
---|
545 | k1 = k+1 |
---|
546 | k2 = k+2 |
---|
547 | |
---|
548 | q0 = Q[k0] |
---|
549 | q1 = Q[k1] |
---|
550 | q2 = Q[k2] |
---|
551 | |
---|
552 | x0 = X[k0] #V0 centroid |
---|
553 | x1 = X[k1] #V1 centroid |
---|
554 | x2 = X[k2] |
---|
555 | |
---|
556 | #Gradient |
---|
557 | #G[k] = (q1 - q0)/(x1 - x0) |
---|
558 | |
---|
559 | G[k] = (q1 - q0)*(x2 - x0)*(x2 - x0) - (q2 - q0)*(x1 - x0)*(x1 - x0) |
---|
560 | G[k] /= (x1 - x0)*(x2 - x0)*(x2 - x1) |
---|
561 | |
---|
562 | elif k == N-1: |
---|
563 | |
---|
564 | #Get data |
---|
565 | k0 = k |
---|
566 | k1 = k-1 |
---|
567 | k2 = k-2 |
---|
568 | |
---|
569 | q0 = Q[k0] |
---|
570 | q1 = Q[k1] |
---|
571 | q2 = Q[k2] |
---|
572 | |
---|
573 | x0 = X[k0] #V0 centroid |
---|
574 | x1 = X[k1] #V1 centroid |
---|
575 | x2 = X[k2] |
---|
576 | |
---|
577 | #Gradient |
---|
578 | #G[k] = (q1 - q0)/(x1 - x0) |
---|
579 | |
---|
580 | G[k] = (q1 - q0)*(x2 - x0)*(x2 - x0) - (q2 - q0)*(x1 - x0)*(x1 - x0) |
---|
581 | G[k] /= (x1 - x0)*(x2 - x0)*(x2 - x1) |
---|
582 | |
---|
583 | ## #Get data |
---|
584 | ## k0 = k |
---|
585 | ## k1 = k-1 |
---|
586 | ## |
---|
587 | ## q0 = Q[k0] |
---|
588 | ## q1 = Q[k1] |
---|
589 | ## |
---|
590 | ## x0 = X[k0] #V0 centroid |
---|
591 | ## x1 = X[k1] #V1 centroid |
---|
592 | ## |
---|
593 | ## #Gradient |
---|
594 | ## G[k] = (q1 - q0)/(x1 - x0) |
---|
595 | |
---|
596 | elif (self.domain.wet_nodes[k,0] == 2) & (self.domain.wet_nodes[k,1] == 2): |
---|
597 | G[k] = 0.0 |
---|
598 | |
---|
599 | else: |
---|
600 | #Interior Volume (2 neighbours) |
---|
601 | |
---|
602 | #Get data |
---|
603 | k0 = k-1 |
---|
604 | k2 = k+1 |
---|
605 | |
---|
606 | q0 = Q[k0] |
---|
607 | q1 = Q[k] |
---|
608 | q2 = Q[k2] |
---|
609 | |
---|
610 | x0 = X[k0] #V0 centroid |
---|
611 | x1 = X[k] #V1 centroid (Self) |
---|
612 | x2 = X[k2] #V2 centroid |
---|
613 | |
---|
614 | # assuming uniform grid |
---|
615 | d1 = (q1 - q0)/(x1-x0) |
---|
616 | d2 = (q2 - q1)/(x2-x1) |
---|
617 | |
---|
618 | #Gradient |
---|
619 | #G[k] = (d1+d2)*0.5 |
---|
620 | #G[k] = (d1*(x2-x1) - d2*(x0-x1))/(x2-x0) |
---|
621 | G[k] = xmic( self.domain.beta, d1, d2 ) |
---|
622 | |
---|
623 | |
---|
624 | def extrapolate_first_order(self): |
---|
625 | """Extrapolate conserved quantities from centroid to |
---|
626 | vertices for each volume using |
---|
627 | first order scheme. |
---|
628 | """ |
---|
629 | |
---|
630 | qc = self.centroid_values |
---|
631 | qv = self.vertex_values |
---|
632 | |
---|
633 | for i in range(2): |
---|
634 | qv[:,i] = qc |
---|
635 | |
---|
636 | |
---|
637 | def extrapolate_second_order(self): |
---|
638 | """Extrapolate conserved quantities from centroid to |
---|
639 | vertices for each volume using |
---|
640 | second order scheme. |
---|
641 | """ |
---|
642 | if self.domain.limiter == "pyvolution": |
---|
643 | #Z = self.gradients |
---|
644 | #print "gradients 1",Z |
---|
645 | self.compute_gradients() |
---|
646 | #print "gradients 2",Z |
---|
647 | |
---|
648 | #Z = self.gradients |
---|
649 | #print "gradients 1",Z |
---|
650 | #self.compute_minmod_gradients() |
---|
651 | #print "gradients 2", Z |
---|
652 | |
---|
653 | G = self.gradients |
---|
654 | V = self.domain.vertices |
---|
655 | qc = self.centroid_values |
---|
656 | qv = self.vertex_values |
---|
657 | |
---|
658 | #Check each triangle |
---|
659 | for k in range(self.domain.number_of_elements): |
---|
660 | #Centroid coordinates |
---|
661 | x = self.domain.centroids[k] |
---|
662 | |
---|
663 | #vertex coordinates |
---|
664 | x0, x1 = V[k,:] |
---|
665 | |
---|
666 | #Extrapolate |
---|
667 | qv[k,0] = qc[k] + G[k]*(x0-x) |
---|
668 | qv[k,1] = qc[k] + G[k]*(x1-x) |
---|
669 | self.limit_pyvolution() |
---|
670 | elif self.domain.limiter == "minmod_steve": |
---|
671 | self.limit_minmod() |
---|
672 | else: |
---|
673 | self.limit_range() |
---|
674 | |
---|
675 | |
---|
676 | |
---|
677 | def limit_minmod(self): |
---|
678 | #Z = self.gradients |
---|
679 | #print "gradients 1",Z |
---|
680 | self.compute_minmod_gradients() |
---|
681 | #print "gradients 2", Z |
---|
682 | |
---|
683 | G = self.gradients |
---|
684 | V = self.domain.vertices |
---|
685 | qc = self.centroid_values |
---|
686 | qv = self.vertex_values |
---|
687 | |
---|
688 | #Check each triangle |
---|
689 | for k in range(self.domain.number_of_elements): |
---|
690 | #Centroid coordinates |
---|
691 | x = self.domain.centroids[k] |
---|
692 | |
---|
693 | #vertex coordinates |
---|
694 | x0, x1 = V[k,:] |
---|
695 | |
---|
696 | #Extrapolate |
---|
697 | qv[k,0] = qc[k] + G[k]*(x0-x) |
---|
698 | qv[k,1] = qc[k] + G[k]*(x1-x) |
---|
699 | |
---|
700 | |
---|
701 | def limit_pyvolution(self): |
---|
702 | """ |
---|
703 | Limit slopes for each volume to eliminate artificial variance |
---|
704 | introduced by e.g. second order extrapolator |
---|
705 | |
---|
706 | This is an unsophisticated limiter as it does not take into |
---|
707 | account dependencies among quantities. |
---|
708 | |
---|
709 | precondition: |
---|
710 | vertex values are estimated from gradient |
---|
711 | postcondition: |
---|
712 | vertex values are updated |
---|
713 | """ |
---|
714 | from Numeric import zeros, Float |
---|
715 | |
---|
716 | N = self.domain.number_of_elements |
---|
717 | beta = self.domain.beta |
---|
718 | #beta = 0.8 |
---|
719 | |
---|
720 | qc = self.centroid_values |
---|
721 | qv = self.vertex_values |
---|
722 | |
---|
723 | #Find min and max of this and neighbour's centroid values |
---|
724 | qmax = self.qmax |
---|
725 | qmin = self.qmin |
---|
726 | |
---|
727 | for k in range(N): |
---|
728 | qmax[k] = qmin[k] = qc[k] |
---|
729 | for i in range(2): |
---|
730 | n = self.domain.neighbours[k,i] |
---|
731 | if n >= 0: |
---|
732 | qn = qc[n] #Neighbour's centroid value |
---|
733 | |
---|
734 | qmin[k] = min(qmin[k], qn) |
---|
735 | qmax[k] = max(qmax[k], qn) |
---|
736 | |
---|
737 | |
---|
738 | #Diffences between centroids and maxima/minima |
---|
739 | dqmax = qmax - qc |
---|
740 | dqmin = qmin - qc |
---|
741 | |
---|
742 | #Deltas between vertex and centroid values |
---|
743 | dq = zeros(qv.shape, Float) |
---|
744 | for i in range(2): |
---|
745 | dq[:,i] = qv[:,i] - qc |
---|
746 | |
---|
747 | #Phi limiter |
---|
748 | for k in range(N): |
---|
749 | |
---|
750 | #Find the gradient limiter (phi) across vertices |
---|
751 | phi = 1.0 |
---|
752 | for i in range(2): |
---|
753 | r = 1.0 |
---|
754 | if (dq[k,i] > 0): r = dqmax[k]/dq[k,i] |
---|
755 | if (dq[k,i] < 0): r = dqmin[k]/dq[k,i] |
---|
756 | |
---|
757 | phi = min( min(r*beta, 1), phi ) |
---|
758 | |
---|
759 | #Then update using phi limiter |
---|
760 | for i in range(2): |
---|
761 | qv[k,i] = qc[k] + phi*dq[k,i] |
---|
762 | |
---|
763 | def limit_range(self): |
---|
764 | import sys |
---|
765 | from Numeric import zeros, Float |
---|
766 | from util import minmod, minmod_kurganov, maxmod, vanleer, vanalbada |
---|
767 | limiter = self.domain.limiter |
---|
768 | #print limiter |
---|
769 | |
---|
770 | #print 'limit_range' |
---|
771 | N = self.domain.number_of_elements |
---|
772 | qc = self.centroid_values |
---|
773 | qv = self.vertex_values |
---|
774 | C = self.domain.centroids |
---|
775 | X = self.domain.vertices |
---|
776 | beta_p = zeros(N,Float) |
---|
777 | beta_m = zeros(N,Float) |
---|
778 | beta_x = zeros(N,Float) |
---|
779 | |
---|
780 | for k in range(N): |
---|
781 | #Note: neighbours=[-1, {0, 1, 2, ..., N-1}, -2] |
---|
782 | n0 = self.domain.neighbours[k,0] |
---|
783 | n1 = self.domain.neighbours[k,1] |
---|
784 | if ( n0 >= 0) & (n1 >= 0): |
---|
785 | #SLOPE DERIVATIVE LIMIT |
---|
786 | beta_p[k] = (qc[k]-qc[k-1])/(C[k]-C[k-1]) |
---|
787 | beta_m[k] = (qc[k+1]-qc[k])/(C[k+1]-C[k]) |
---|
788 | beta_x[k] = (qc[k+1]-qc[k-1])/(C[k+1]-C[k-1]) |
---|
789 | |
---|
790 | dq = zeros(qv.shape, Float) |
---|
791 | for i in range(2): |
---|
792 | dq[:,i] =self.domain.vertices[:,i]-self.domain.centroids |
---|
793 | |
---|
794 | #Phi limiter |
---|
795 | for k in range(N): |
---|
796 | #Note: neighbours=[-1, {0, 1, 2, ..., N-1}, -2] |
---|
797 | n0 = self.domain.neighbours[k,0] |
---|
798 | n1 = self.domain.neighbours[k,1] |
---|
799 | if n0 < 0: |
---|
800 | phi = (qc[k+1] - qc[k])/(C[k+1] - C[k]) |
---|
801 | elif n1 < 0: |
---|
802 | phi = (qc[k] - qc[k-1])/(C[k] - C[k-1]) |
---|
803 | else: |
---|
804 | if limiter == "minmod": |
---|
805 | phi = minmod(beta_p[k],beta_m[k]) |
---|
806 | elif limiter == "minmod_kurganov": |
---|
807 | # Also known as monotonized central difference limiter if theta = 2.0 |
---|
808 | theta = 2.0 |
---|
809 | phi = minmod_kurganov(theta*beta_p[k],theta*beta_m[k],beta_x[k]) |
---|
810 | elif limiter == "superbee": |
---|
811 | slope1 = minmod(beta_m[k],2.0*beta_p[k]) |
---|
812 | slope2 = minmod(2.0*beta_m[k],beta_p[k]) |
---|
813 | phi = maxmod(slope1,slope2) |
---|
814 | elif limiter == "vanleer": |
---|
815 | phi = vanleer(beta_p[k],beta_m[k]) |
---|
816 | elif limiter == "vanalbada": |
---|
817 | phi = vanalbada(beta_m[k],beta_p[k]) |
---|
818 | for i in range(2): |
---|
819 | qv[k,i] = qc[k] + phi*dq[k,i] |
---|
820 | |
---|
821 | def limit_steve_slope(self): |
---|
822 | |
---|
823 | import sys |
---|
824 | from Numeric import zeros, Float |
---|
825 | from util import minmod, minmod_kurganov, maxmod, vanleer |
---|
826 | |
---|
827 | N = self.domain.number_of_elements |
---|
828 | limiter = self.domain.limiter |
---|
829 | limiter_type = self.domain.limiter_type |
---|
830 | |
---|
831 | qc = self.centroid_values |
---|
832 | qv = self.vertex_values |
---|
833 | |
---|
834 | #Find min and max of this and neighbour's centroid values |
---|
835 | beta_p = zeros(N,Float) |
---|
836 | beta_m = zeros(N,Float) |
---|
837 | beta_x = zeros(N,Float) |
---|
838 | C = self.domain.centroids |
---|
839 | X = self.domain.vertices |
---|
840 | |
---|
841 | for k in range(N): |
---|
842 | |
---|
843 | n0 = self.domain.neighbours[k,0] |
---|
844 | n1 = self.domain.neighbours[k,1] |
---|
845 | |
---|
846 | if (n0 >= 0) & (n1 >= 0): |
---|
847 | # Check denominator not zero |
---|
848 | if (qc[k+1]-qc[k]) == 0.0: |
---|
849 | beta_p[k] = float(sys.maxint) |
---|
850 | beta_m[k] = float(sys.maxint) |
---|
851 | else: |
---|
852 | #STEVE LIMIT |
---|
853 | beta_p[k] = (qc[k]-qc[k-1])/(qc[k+1]-qc[k]) |
---|
854 | beta_m[k] = (qc[k+2]-qc[k+1])/(qc[k+1]-qc[k]) |
---|
855 | |
---|
856 | #Deltas between vertex and centroid values |
---|
857 | dq = zeros(qv.shape, Float) |
---|
858 | for i in range(2): |
---|
859 | dq[:,i] =self.domain.vertices[:,i]-self.domain.centroids |
---|
860 | |
---|
861 | #Phi limiter |
---|
862 | for k in range(N): |
---|
863 | |
---|
864 | phi = 0.0 |
---|
865 | if limiter == "flux_minmod": |
---|
866 | #FLUX MINMOD |
---|
867 | phi = minmod_kurganov(1.0,beta_m[k],beta_p[k]) |
---|
868 | elif limiter == "flux_superbee": |
---|
869 | #FLUX SUPERBEE |
---|
870 | phi = max(0.0,min(1.0,2.0*beta_m[k]),min(2.0,beta_m[k]))+max(0.0,min(1.0,2.0*beta_p[k]),min(2.0,beta_p[k]))-1.0 |
---|
871 | elif limiter == "flux_muscl": |
---|
872 | #FLUX MUSCL |
---|
873 | phi = max(0.0,min(2.0,2.0*beta_m[k],2.0*beta_p[k],0.5*(beta_m[k]+beta_p[k]))) |
---|
874 | elif limiter == "flux_vanleer": |
---|
875 | #FLUX VAN LEER |
---|
876 | phi = (beta_m[k]+abs(beta_m[k]))/(1.0+abs(beta_m[k]))+(beta_p[k]+abs(beta_p[k]))/(1.0+abs(beta_p[k]))-1.0 |
---|
877 | |
---|
878 | #Then update using phi limiter |
---|
879 | n = self.domain.neighbours[k,1] |
---|
880 | if n>=0: |
---|
881 | #qv[k,0] = qc[k] - 0.5*phi*(qc[k+1]-qc[k]) |
---|
882 | #qv[k,1] = qc[k] + 0.5*phi*(qc[k+1]-qc[k]) |
---|
883 | qv[k,0] = qc[k] + 0.5*phi*(qv[k,0]-qc[k]) |
---|
884 | qv[k,1] = qc[k] + 0.5*phi*(qv[k,1]-qc[k]) |
---|
885 | else: |
---|
886 | qv[k,i] = qc[k] |
---|
887 | |
---|
888 | def backup_centroid_values(self): |
---|
889 | # Call correct module function |
---|
890 | # (either from this module or C-extension) |
---|
891 | #backup_centroid_values(self) |
---|
892 | |
---|
893 | self.centroid_backup_values[:] = (self.centroid_values).astype('f') |
---|
894 | |
---|
895 | def saxpy_centroid_values(self,a,b): |
---|
896 | # Call correct module function |
---|
897 | # (either from this module or C-extension) |
---|
898 | self.centroid_values[:] = (a*self.centroid_values + b*self.centroid_backup_values).astype('f') |
---|
899 | |
---|
900 | class Conserved_quantity(Quantity): |
---|
901 | """Class conserved quantity adds to Quantity: |
---|
902 | |
---|
903 | storage and method for updating, and |
---|
904 | methods for extrapolation from centropid to vertices inluding |
---|
905 | gradients and limiters |
---|
906 | """ |
---|
907 | |
---|
908 | def __init__(self, domain, vertex_values=None): |
---|
909 | Quantity.__init__(self, domain, vertex_values) |
---|
910 | |
---|
911 | print "Use Quantity instead of Conserved_quantity" |
---|
912 | |
---|
913 | |
---|
914 | ## |
---|
915 | ##def newLinePlot(title='Simple Plot'): |
---|
916 | ## import Gnuplot |
---|
917 | ## g = Gnuplot.Gnuplot() |
---|
918 | ## g.title(title) |
---|
919 | ## g('set data style linespoints') |
---|
920 | ## g.xlabel('x') |
---|
921 | ## g.ylabel('y') |
---|
922 | ## return g |
---|
923 | ## |
---|
924 | ##def linePlot(g,x,y): |
---|
925 | ## import Gnuplot |
---|
926 | ## g.plot(Gnuplot.PlotItems.Data(x.flat,y.flat)) |
---|
927 | |
---|
928 | |
---|
929 | #####The following is a UNIT TEST########## |
---|
930 | |
---|
931 | def newLinePlot(title='Simple Plot'): |
---|
932 | import pylab as g |
---|
933 | g.ion() |
---|
934 | g.hold(False) |
---|
935 | g.title(title) |
---|
936 | g.xlabel('x') |
---|
937 | g.ylabel('y') |
---|
938 | |
---|
939 | |
---|
940 | def linePlot(x,y): |
---|
941 | import pylab as g |
---|
942 | g.plot(x.flat,y.flat) |
---|
943 | |
---|
944 | |
---|
945 | def closePlots(): |
---|
946 | import pylab as g |
---|
947 | g.close('all') |
---|
948 | |
---|
949 | if __name__ == "__main__": |
---|
950 | #from domain import Domain |
---|
951 | from domain_cg import Domain |
---|
952 | from Numeric import arange |
---|
953 | |
---|
954 | points1 = [0.0, 1.0, 2.0, 3.0] |
---|
955 | vertex_values = [[1.0,2.0],[4.0,5.0],[-1.0,2.0]] |
---|
956 | |
---|
957 | D1 = Domain(points1) |
---|
958 | |
---|
959 | Q1 = Quantity(D1, vertex_values) |
---|
960 | |
---|
961 | print Q1.vertex_values |
---|
962 | print Q1.centroid_values |
---|
963 | |
---|
964 | new_vertex_values = [[2.0,1.0],[3.0,4.0],[-2.0,4.0]] |
---|
965 | |
---|
966 | Q1.set_values(new_vertex_values) |
---|
967 | |
---|
968 | print Q1.vertex_values |
---|
969 | print Q1.centroid_values |
---|
970 | |
---|
971 | new_centroid_values = [20,30,40] |
---|
972 | Q1.set_values(new_centroid_values,'centroids') |
---|
973 | |
---|
974 | print Q1.vertex_values |
---|
975 | print Q1.centroid_values |
---|
976 | |
---|
977 | class FunClass: |
---|
978 | def __init__(self,value): |
---|
979 | self.value = value |
---|
980 | |
---|
981 | def __call__(self,x): |
---|
982 | return self.value*(x**2) |
---|
983 | |
---|
984 | |
---|
985 | fun = FunClass(1.0) |
---|
986 | Q1.set_values(fun,'vertices') |
---|
987 | |
---|
988 | print Q1.vertex_values |
---|
989 | print Q1.centroid_values |
---|
990 | |
---|
991 | Xc = Q1.domain.vertices |
---|
992 | Qc = Q1.vertex_values |
---|
993 | print Xc |
---|
994 | print Qc |
---|
995 | |
---|
996 | Qc[1,0] = 3 |
---|
997 | |
---|
998 | Q1.extrapolate_second_order() |
---|
999 | #Q1.limit_minmod() |
---|
1000 | |
---|
1001 | newLinePlot('plots') |
---|
1002 | linePlot(Xc,Qc) |
---|
1003 | raw_input('press return') |
---|
1004 | |
---|
1005 | points2 = arange(10) |
---|
1006 | D2 = Domain(points2) |
---|
1007 | |
---|
1008 | Q2 = Quantity(D2) |
---|
1009 | Q2.set_values(fun,'vertices') |
---|
1010 | Xc = Q2.domain.vertices |
---|
1011 | Qc = Q2.vertex_values |
---|
1012 | linePlot(Xc,Qc) |
---|
1013 | raw_input('press return') |
---|
1014 | |
---|
1015 | |
---|
1016 | Q2.extrapolate_second_order() |
---|
1017 | #Q2.limit_minmod() |
---|
1018 | Xc = Q2.domain.vertices |
---|
1019 | Qc = Q2.vertex_values |
---|
1020 | print Q2.centroid_values |
---|
1021 | print Qc |
---|
1022 | linePlot(Xc,Qc) |
---|
1023 | raw_input('press return') |
---|
1024 | |
---|
1025 | |
---|
1026 | for i in range(10): |
---|
1027 | import pylab as g |
---|
1028 | g.hold(True) |
---|
1029 | fun = FunClass(i/10.0) |
---|
1030 | Q2.set_values(fun,'centroids') |
---|
1031 | Q2.extrapolate_second_order() |
---|
1032 | #Q2.limit_minmod() |
---|
1033 | Qc = Q2.vertex_values |
---|
1034 | linePlot(Xc,Qc) |
---|
1035 | raw_input('press return') |
---|
1036 | |
---|
1037 | raw_input('press return to quit') |
---|
1038 | closePlots() |
---|