1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | import unittest, os |
---|
4 | import os.path |
---|
5 | from math import pi, sqrt |
---|
6 | import tempfile |
---|
7 | |
---|
8 | from anuga.config import g, epsilon |
---|
9 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a |
---|
10 | from anuga.utilities.numerical_tools import mean |
---|
11 | from anuga.utilities.polygon import is_inside_polygon |
---|
12 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
13 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
14 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
15 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
16 | |
---|
17 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
18 | from swb_domain import * |
---|
19 | |
---|
20 | import numpy as num |
---|
21 | |
---|
22 | # Get gateway to C implementation of flux function for direct testing |
---|
23 | from shallow_water_ext import flux_function_central as flux_function |
---|
24 | |
---|
25 | |
---|
26 | # For test_fitting_using_shallow_water_domain example |
---|
27 | def linear_function(point): |
---|
28 | point = num.array(point) |
---|
29 | return point[:,0]+point[:,1] |
---|
30 | |
---|
31 | class Weir: |
---|
32 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
33 | x,y are assumed to be in the unit square |
---|
34 | """ |
---|
35 | |
---|
36 | def __init__(self, stage): |
---|
37 | self.inflow_stage = stage |
---|
38 | |
---|
39 | def __call__(self, x, y): |
---|
40 | N = len(x) |
---|
41 | assert N == len(y) |
---|
42 | |
---|
43 | z = num.zeros(N, num.float) |
---|
44 | for i in range(N): |
---|
45 | z[i] = -x[i]/2 #General slope |
---|
46 | |
---|
47 | #Flattish bit to the left |
---|
48 | if x[i] < 0.3: |
---|
49 | z[i] = -x[i]/10 |
---|
50 | |
---|
51 | #Weir |
---|
52 | if x[i] >= 0.3 and x[i] < 0.4: |
---|
53 | z[i] = -x[i]+0.9 |
---|
54 | |
---|
55 | #Dip |
---|
56 | x0 = 0.6 |
---|
57 | depth = -1.0 |
---|
58 | plateaux = -0.6 |
---|
59 | if y[i] < 0.7: |
---|
60 | if x[i] > x0 and x[i] < 0.9: |
---|
61 | z[i] = depth |
---|
62 | #RHS plateaux |
---|
63 | if x[i] >= 0.9: |
---|
64 | z[i] = plateaux |
---|
65 | elif y[i] >= 0.7 and y[i] < 1.5: |
---|
66 | #Restrict and deepen |
---|
67 | if x[i] >= x0 and x[i] < 0.8: |
---|
68 | z[i] = depth - (y[i]/3 - 0.3) |
---|
69 | elif x[i] >= 0.8: |
---|
70 | #RHS plateaux |
---|
71 | z[i] = plateaux |
---|
72 | elif y[i] >= 1.5: |
---|
73 | if x[i] >= x0 and x[i] < 0.8 + (y[i]-1.5)/1.2: |
---|
74 | #Widen up and stay at constant depth |
---|
75 | z[i] = depth-1.5/5 |
---|
76 | elif x[i] >= 0.8 + (y[i]-1.5)/1.2: |
---|
77 | #RHS plateaux |
---|
78 | z[i] = plateaux |
---|
79 | |
---|
80 | #Hole in weir (slightly higher than inflow condition) |
---|
81 | if x[i] >= 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
82 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
83 | |
---|
84 | #Channel behind weir |
---|
85 | x0 = 0.5 |
---|
86 | if x[i] >= 0.4 and x[i] < x0 and y[i] > 0.2 and y[i] < 0.4: |
---|
87 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
88 | |
---|
89 | if x[i] >= x0 and x[i] < 0.6 and y[i] > 0.2 and y[i] < 0.4: |
---|
90 | #Flatten it out towards the end |
---|
91 | z[i] = -x0+self.inflow_stage + 0.02 + (x0-x[i])/5 |
---|
92 | |
---|
93 | # Hole to the east |
---|
94 | x0 = 1.1 |
---|
95 | y0 = 0.35 |
---|
96 | if num.sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
97 | z[i] = num.sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-1.0 |
---|
98 | |
---|
99 | #Tiny channel draining hole |
---|
100 | if x[i] >= 1.14 and x[i] < 1.2 and y[i] >= 0.4 and y[i] < 0.6: |
---|
101 | z[i] = -0.9 #North south |
---|
102 | |
---|
103 | if x[i] >= 0.9 and x[i] < 1.18 and y[i] >= 0.58 and y[i] < 0.65: |
---|
104 | z[i] = -1.0 + (x[i]-0.9)/3 #East west |
---|
105 | |
---|
106 | # Stuff not in use |
---|
107 | |
---|
108 | # Upward slope at inlet to the north west |
---|
109 | # if x[i] < 0.0: # and y[i] > 0.5: |
---|
110 | # #z[i] = -y[i]+0.5 #-x[i]/2 |
---|
111 | # z[i] = x[i]/4 - y[i]**2 + 0.5 |
---|
112 | |
---|
113 | # Hole to the west |
---|
114 | # x0 = -0.4; y0 = 0.35 # center |
---|
115 | # if sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
116 | # z[i] = sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-0.2 |
---|
117 | |
---|
118 | return z/2 |
---|
119 | |
---|
120 | |
---|
121 | |
---|
122 | ######################################################### |
---|
123 | |
---|
124 | class Test_swb_basic(unittest.TestCase): |
---|
125 | def setUp(self): |
---|
126 | pass |
---|
127 | |
---|
128 | def tearDown(self): |
---|
129 | pass |
---|
130 | |
---|
131 | |
---|
132 | def test_rotate(self): |
---|
133 | normal = num.array([0.0, -1.0]) |
---|
134 | |
---|
135 | q = num.array([1.0, 2.0, 3.0]) |
---|
136 | |
---|
137 | r = rotate(q, normal, direction = 1) |
---|
138 | assert r[0] == 1 |
---|
139 | assert r[1] == -3 |
---|
140 | assert r[2] == 2 |
---|
141 | |
---|
142 | w = rotate(r, normal, direction = -1) |
---|
143 | assert num.allclose(w, q) |
---|
144 | |
---|
145 | # Check error check |
---|
146 | try: |
---|
147 | rotate(r, num.array([1, 1, 1])) |
---|
148 | except: |
---|
149 | pass |
---|
150 | else: |
---|
151 | raise Exception, 'Should have raised an exception' |
---|
152 | |
---|
153 | # Individual flux tests |
---|
154 | def test_flux_zero_case(self): |
---|
155 | ql = num.zeros(3, num.float) |
---|
156 | qr = num.zeros(3, num.float) |
---|
157 | normal = num.zeros(2, num.float) |
---|
158 | edgeflux = num.zeros(3, num.float) |
---|
159 | zl = zr = 0. |
---|
160 | H0 = 1.0e-3 # As suggested in the manual |
---|
161 | |
---|
162 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
163 | |
---|
164 | assert num.allclose(edgeflux, [0,0,0]) |
---|
165 | assert max_speed == 0. |
---|
166 | |
---|
167 | def test_flux_constants(self): |
---|
168 | w = 2.0 |
---|
169 | |
---|
170 | normal = num.array([1.,0]) |
---|
171 | ql = num.array([w, 0, 0]) |
---|
172 | qr = num.array([w, 0, 0]) |
---|
173 | edgeflux = num.zeros(3, num.float) |
---|
174 | zl = zr = 0. |
---|
175 | h = w - (zl+zr)/2 |
---|
176 | H0 = 0.0 |
---|
177 | |
---|
178 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
179 | assert num.allclose(edgeflux, [0., 0.5*g*h**2, 0.]) |
---|
180 | assert max_speed == num.sqrt(g*h) |
---|
181 | |
---|
182 | #def test_flux_slope(self): |
---|
183 | # #FIXME: TODO |
---|
184 | # w = 2.0 |
---|
185 | # |
---|
186 | # normal = array([1.,0]) |
---|
187 | # ql = array([w, 0, 0]) |
---|
188 | # qr = array([w, 0, 0]) |
---|
189 | # zl = zr = 0. |
---|
190 | # h = w - (zl+zr)/2 |
---|
191 | # |
---|
192 | # flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
193 | # |
---|
194 | # assert allclose(flux, [0., 0.5*g*h**2, 0.]) |
---|
195 | # assert max_speed == sqrt(g*h) |
---|
196 | |
---|
197 | def test_flux1(self): |
---|
198 | # Use data from previous version of abstract_2d_finite_volumes |
---|
199 | normal = num.array([1., 0]) |
---|
200 | ql = num.array([-0.2, 2, 3]) |
---|
201 | qr = num.array([-0.2, 2, 3]) |
---|
202 | zl = zr = -0.5 |
---|
203 | edgeflux = num.zeros(3, num.float) |
---|
204 | |
---|
205 | H0 = 0.0 |
---|
206 | |
---|
207 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, |
---|
208 | epsilon, g, H0) |
---|
209 | |
---|
210 | assert num.allclose(edgeflux, [2., 13.77433333, 20.]) |
---|
211 | assert num.allclose(max_speed, 8.38130948661) |
---|
212 | |
---|
213 | def test_flux2(self): |
---|
214 | # Use data from previous version of abstract_2d_finite_volumes |
---|
215 | normal = num.array([0., -1.]) |
---|
216 | ql = num.array([-0.075, 2, 3]) |
---|
217 | qr = num.array([-0.075, 2, 3]) |
---|
218 | zl = zr = -0.375 |
---|
219 | |
---|
220 | edgeflux = num.zeros(3, num.float) |
---|
221 | H0 = 0.0 |
---|
222 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, |
---|
223 | epsilon, g, H0) |
---|
224 | |
---|
225 | assert num.allclose(edgeflux, [-3., -20.0, -30.441]) |
---|
226 | assert num.allclose(max_speed, 11.7146428199) |
---|
227 | |
---|
228 | def test_flux3(self): |
---|
229 | # Use data from previous version of abstract_2d_finite_volumes |
---|
230 | normal = num.array([-sqrt(2)/2, sqrt(2)/2]) |
---|
231 | ql = num.array([-0.075, 2, 3]) |
---|
232 | qr = num.array([-0.075, 2, 3]) |
---|
233 | zl = zr = -0.375 |
---|
234 | |
---|
235 | edgeflux = num.zeros(3, num.float) |
---|
236 | H0 = 0.0 |
---|
237 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, |
---|
238 | epsilon, g, H0) |
---|
239 | |
---|
240 | assert num.allclose(edgeflux, [sqrt(2)/2, 4.40221112, 7.3829019]) |
---|
241 | assert num.allclose(max_speed, 4.0716654239) |
---|
242 | |
---|
243 | def test_flux4(self): |
---|
244 | # Use data from previous version of abstract_2d_finite_volumes |
---|
245 | normal = num.array([-sqrt(2)/2, sqrt(2)/2]) |
---|
246 | ql = num.array([-0.34319278, 0.10254161, 0.07273855]) |
---|
247 | qr = num.array([-0.30683287, 0.1071986, 0.05930515]) |
---|
248 | zl = zr = -0.375 |
---|
249 | |
---|
250 | edgeflux = num.zeros(3, num.float) |
---|
251 | H0 = 0.0 |
---|
252 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, |
---|
253 | epsilon, g, H0) |
---|
254 | |
---|
255 | assert num.allclose(edgeflux, [-0.04072676, -0.07096636, -0.01604364]) |
---|
256 | assert num.allclose(max_speed, 1.31414103233) |
---|
257 | |
---|
258 | def test_flux_computation(self): |
---|
259 | """test flux calculation (actual C implementation) |
---|
260 | |
---|
261 | This one tests the constant case where only the pressure term |
---|
262 | contributes to each edge and cancels out once the total flux has |
---|
263 | been summed up. |
---|
264 | """ |
---|
265 | |
---|
266 | a = [0.0, 0.0] |
---|
267 | b = [0.0, 2.0] |
---|
268 | c = [2.0, 0.0] |
---|
269 | d = [0.0, 4.0] |
---|
270 | e = [2.0, 2.0] |
---|
271 | f = [4.0, 0.0] |
---|
272 | |
---|
273 | points = [a, b, c, d, e, f] |
---|
274 | # bac, bce, ecf, dbe |
---|
275 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
276 | |
---|
277 | domain = Domain(points, vertices) |
---|
278 | domain.check_integrity() |
---|
279 | |
---|
280 | # The constant case |
---|
281 | domain.set_quantity('elevation', -1) |
---|
282 | domain.set_quantity('stage', 1) |
---|
283 | |
---|
284 | domain.compute_fluxes() |
---|
285 | # Central triangle |
---|
286 | assert num.allclose(domain.get_quantity('stage').explicit_update[1], 0) |
---|
287 | |
---|
288 | # The more general case |
---|
289 | def surface(x, y): |
---|
290 | return -x/2 |
---|
291 | |
---|
292 | domain.set_quantity('elevation', -10) |
---|
293 | domain.set_quantity('stage', surface) |
---|
294 | domain.set_quantity('xmomentum', 1) |
---|
295 | |
---|
296 | domain.compute_fluxes() |
---|
297 | |
---|
298 | #print domain.get_quantity('stage').explicit_update |
---|
299 | # FIXME (Ole): TODO the general case |
---|
300 | #assert allclose(domain.get_quantity('stage').explicit_update[1], ...??) |
---|
301 | |
---|
302 | def test_sw_domain_simple(self): |
---|
303 | a = [0.0, 0.0] |
---|
304 | b = [0.0, 2.0] |
---|
305 | c = [2.0, 0.0] |
---|
306 | d = [0.0, 4.0] |
---|
307 | e = [2.0, 2.0] |
---|
308 | f = [4.0, 0.0] |
---|
309 | |
---|
310 | points = [a, b, c, d, e, f] |
---|
311 | # bac, bce, ecf, dbe |
---|
312 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
313 | |
---|
314 | #from anuga.abstract_2d_finite_volumes.domain import Domain as Generic_domain |
---|
315 | #msg = 'The class %s is not a subclass of the generic domain class %s'\ |
---|
316 | # %(DomainClass, Domain) |
---|
317 | #assert issubclass(DomainClass, Domain), msg |
---|
318 | |
---|
319 | domain = Domain(points, vertices) |
---|
320 | domain.check_integrity() |
---|
321 | |
---|
322 | for name in ['stage', 'xmomentum', 'ymomentum', |
---|
323 | 'elevation', 'friction']: |
---|
324 | assert domain.quantities.has_key(name) |
---|
325 | |
---|
326 | assert num.alltrue(domain.get_conserved_quantities(0, edge=1) == 0.) |
---|
327 | |
---|
328 | def xtest_catching_negative_heights(self): |
---|
329 | #OBSOLETE |
---|
330 | |
---|
331 | a = [0.0, 0.0] |
---|
332 | b = [0.0, 2.0] |
---|
333 | c = [2.0, 0.0] |
---|
334 | d = [0.0, 4.0] |
---|
335 | e = [2.0, 2.0] |
---|
336 | f = [4.0, 0.0] |
---|
337 | |
---|
338 | points = [a, b, c, d, e, f] |
---|
339 | # bac, bce, ecf, dbe |
---|
340 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
341 | |
---|
342 | domain = Domain(points, vertices) |
---|
343 | val0 = 2. + 2.0/3 |
---|
344 | val1 = 4. + 4.0/3 |
---|
345 | val2 = 8. + 2.0/3 |
---|
346 | val3 = 2. + 8.0/3 |
---|
347 | |
---|
348 | zl = zr = 4 # Too large |
---|
349 | domain.set_quantity('elevation', zl*num.ones((4, 3), num.int)) #array default# |
---|
350 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
351 | [val1, val1+1, val1], |
---|
352 | [val2, val2-2, val2], |
---|
353 | [val3-0.5, val3, val3]]) |
---|
354 | |
---|
355 | #Should fail |
---|
356 | try: |
---|
357 | domain.check_integrity() |
---|
358 | except: |
---|
359 | pass |
---|
360 | |
---|
361 | def test_get_wet_elements(self): |
---|
362 | a = [0.0, 0.0] |
---|
363 | b = [0.0, 2.0] |
---|
364 | c = [2.0, 0.0] |
---|
365 | d = [0.0, 4.0] |
---|
366 | e = [2.0, 2.0] |
---|
367 | f = [4.0, 0.0] |
---|
368 | |
---|
369 | points = [a, b, c, d, e, f] |
---|
370 | # bac, bce, ecf, dbe |
---|
371 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
372 | |
---|
373 | domain = Domain(points, vertices) |
---|
374 | |
---|
375 | val0 = 2. + 2.0/3 |
---|
376 | val1 = 4. + 4.0/3 |
---|
377 | val2 = 8. + 2.0/3 |
---|
378 | val3 = 2. + 8.0/3 |
---|
379 | |
---|
380 | zl = zr = 5 |
---|
381 | domain.set_quantity('elevation', zl*num.ones((4, 3), num.int)) #array default# |
---|
382 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
383 | [val1, val1+1, val1], |
---|
384 | [val2, val2-2, val2], |
---|
385 | [val3-0.5, val3, val3]]) |
---|
386 | |
---|
387 | domain.check_integrity() |
---|
388 | |
---|
389 | indices = domain.get_wet_elements() |
---|
390 | assert num.allclose(indices, [1, 2]) |
---|
391 | |
---|
392 | indices = domain.get_wet_elements(indices=[0, 1, 3]) |
---|
393 | assert num.allclose(indices, [1]) |
---|
394 | |
---|
395 | def test_get_maximum_inundation_1(self): |
---|
396 | a = [0.0, 0.0] |
---|
397 | b = [0.0, 2.0] |
---|
398 | c = [2.0, 0.0] |
---|
399 | d = [0.0, 4.0] |
---|
400 | e = [2.0, 2.0] |
---|
401 | f = [4.0, 0.0] |
---|
402 | |
---|
403 | points = [a, b, c, d, e, f] |
---|
404 | # bac, bce, ecf, dbe |
---|
405 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
406 | |
---|
407 | domain = Domain(points, vertices) |
---|
408 | |
---|
409 | domain.set_quantity('elevation', lambda x, y: x+2*y) # 2 4 4 6 |
---|
410 | domain.set_quantity('stage', 3) |
---|
411 | |
---|
412 | domain.check_integrity() |
---|
413 | |
---|
414 | indices = domain.get_wet_elements() |
---|
415 | assert num.allclose(indices, [0]) |
---|
416 | |
---|
417 | q = domain.get_maximum_inundation_elevation() |
---|
418 | assert num.allclose(q, domain.get_quantity('elevation').\ |
---|
419 | get_values(location='centroids')[0]) |
---|
420 | |
---|
421 | x, y = domain.get_maximum_inundation_location() |
---|
422 | assert num.allclose([x, y], domain.get_centroid_coordinates()[0]) |
---|
423 | |
---|
424 | def test_get_maximum_inundation_2(self): |
---|
425 | """test_get_maximum_inundation_2(self) |
---|
426 | |
---|
427 | Test multiple wet cells with same elevation |
---|
428 | """ |
---|
429 | |
---|
430 | a = [0.0, 0.0] |
---|
431 | b = [0.0, 2.0] |
---|
432 | c = [2.0, 0.0] |
---|
433 | d = [0.0, 4.0] |
---|
434 | e = [2.0, 2.0] |
---|
435 | f = [4.0, 0.0] |
---|
436 | |
---|
437 | points = [a, b, c, d, e, f] |
---|
438 | # bac, bce, ecf, dbe |
---|
439 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
440 | |
---|
441 | domain = Domain(points, vertices) |
---|
442 | |
---|
443 | domain.set_quantity('elevation', lambda x, y: x+2*y) # 2 4 4 6 |
---|
444 | domain.set_quantity('stage', 4.1) |
---|
445 | |
---|
446 | domain.check_integrity() |
---|
447 | |
---|
448 | indices = domain.get_wet_elements() |
---|
449 | assert num.allclose(indices, [0, 1, 2]) |
---|
450 | |
---|
451 | q = domain.get_maximum_inundation_elevation() |
---|
452 | assert num.allclose(q, 4) |
---|
453 | |
---|
454 | x, y = domain.get_maximum_inundation_location() |
---|
455 | assert num.allclose([x, y], domain.get_centroid_coordinates()[1]) |
---|
456 | |
---|
457 | def test_get_maximum_inundation_3(self): |
---|
458 | """test_get_maximum_inundation_3(self) |
---|
459 | |
---|
460 | Test of real runup example: |
---|
461 | """ |
---|
462 | |
---|
463 | from anuga.abstract_2d_finite_volumes.mesh_factory \ |
---|
464 | import rectangular_cross |
---|
465 | |
---|
466 | initial_runup_height = -0.4 |
---|
467 | final_runup_height = -0.3 |
---|
468 | |
---|
469 | #-------------------------------------------------------------- |
---|
470 | # Setup computational domain |
---|
471 | #-------------------------------------------------------------- |
---|
472 | N = 5 |
---|
473 | points, vertices, boundary = rectangular_cross(N, N) |
---|
474 | domain = Domain(points, vertices, boundary) |
---|
475 | domain.set_maximum_allowed_speed(1.0) |
---|
476 | |
---|
477 | #-------------------------------------------------------------- |
---|
478 | # Setup initial conditions |
---|
479 | #-------------------------------------------------------------- |
---|
480 | def topography(x, y): |
---|
481 | return -x/2 # linear bed slope |
---|
482 | |
---|
483 | # Use function for elevation |
---|
484 | domain.set_quantity('elevation', topography) |
---|
485 | domain.set_quantity('friction', 0.) # Zero friction |
---|
486 | # Constant negative initial stage |
---|
487 | domain.set_quantity('stage', initial_runup_height) |
---|
488 | |
---|
489 | #-------------------------------------------------------------- |
---|
490 | # Setup boundary conditions |
---|
491 | #-------------------------------------------------------------- |
---|
492 | Br = Reflective_boundary(domain) # Reflective wall |
---|
493 | Bd = Dirichlet_boundary([final_runup_height, 0, 0]) # Constant inflow |
---|
494 | |
---|
495 | # All reflective to begin with (still water) |
---|
496 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
497 | |
---|
498 | #-------------------------------------------------------------- |
---|
499 | # Test initial inundation height |
---|
500 | #-------------------------------------------------------------- |
---|
501 | |
---|
502 | indices = domain.get_wet_elements() |
---|
503 | z = domain.get_quantity('elevation').get_values(location='centroids', |
---|
504 | indices=indices) |
---|
505 | assert num.alltrue(z < initial_runup_height) |
---|
506 | |
---|
507 | q = domain.get_maximum_inundation_elevation() |
---|
508 | # First order accuracy |
---|
509 | assert num.allclose(q, initial_runup_height, rtol=1.0/N) |
---|
510 | |
---|
511 | x, y = domain.get_maximum_inundation_location() |
---|
512 | |
---|
513 | qref = domain.get_quantity('elevation').\ |
---|
514 | get_values(interpolation_points=[[x, y]]) |
---|
515 | assert num.allclose(q, qref) |
---|
516 | |
---|
517 | wet_elements = domain.get_wet_elements() |
---|
518 | wet_elevations = domain.get_quantity('elevation').\ |
---|
519 | get_values(location='centroids', |
---|
520 | indices=wet_elements) |
---|
521 | assert num.alltrue(wet_elevations < initial_runup_height) |
---|
522 | assert num.allclose(wet_elevations, z) |
---|
523 | |
---|
524 | #-------------------------------------------------------------- |
---|
525 | # Let triangles adjust |
---|
526 | #-------------------------------------------------------------- |
---|
527 | for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0): |
---|
528 | pass |
---|
529 | |
---|
530 | #-------------------------------------------------------------- |
---|
531 | # Test inundation height again |
---|
532 | #-------------------------------------------------------------- |
---|
533 | indices = domain.get_wet_elements() |
---|
534 | z = domain.get_quantity('elevation').get_values(location='centroids', |
---|
535 | indices=indices) |
---|
536 | |
---|
537 | assert num.alltrue(z < initial_runup_height) |
---|
538 | |
---|
539 | q = domain.get_maximum_inundation_elevation() |
---|
540 | # First order accuracy |
---|
541 | assert num.allclose(q, initial_runup_height, rtol=1.0/N) |
---|
542 | |
---|
543 | x, y = domain.get_maximum_inundation_location() |
---|
544 | qref = domain.get_quantity('elevation').\ |
---|
545 | get_values(interpolation_points=[[x, y]]) |
---|
546 | assert num.allclose(q, qref) |
---|
547 | |
---|
548 | #-------------------------------------------------------------- |
---|
549 | # Update boundary to allow inflow |
---|
550 | #-------------------------------------------------------------- |
---|
551 | domain.set_boundary({'right': Bd}) |
---|
552 | |
---|
553 | #-------------------------------------------------------------- |
---|
554 | # Evolve system through time |
---|
555 | #-------------------------------------------------------------- |
---|
556 | for t in domain.evolve(yieldstep = 0.1, finaltime = 3.0): |
---|
557 | pass |
---|
558 | |
---|
559 | #-------------------------------------------------------------- |
---|
560 | # Test inundation height again |
---|
561 | #-------------------------------------------------------------- |
---|
562 | indices = domain.get_wet_elements() |
---|
563 | z = domain.get_quantity('elevation').\ |
---|
564 | get_values(location='centroids', indices=indices) |
---|
565 | |
---|
566 | assert num.alltrue(z < final_runup_height) |
---|
567 | |
---|
568 | q = domain.get_maximum_inundation_elevation() |
---|
569 | # First order accuracy |
---|
570 | assert num.allclose(q, final_runup_height, rtol=1.0/N) |
---|
571 | |
---|
572 | x, y = domain.get_maximum_inundation_location() |
---|
573 | qref = domain.get_quantity('elevation').\ |
---|
574 | get_values(interpolation_points=[[x, y]]) |
---|
575 | assert num.allclose(q, qref) |
---|
576 | |
---|
577 | wet_elements = domain.get_wet_elements() |
---|
578 | wet_elevations = domain.get_quantity('elevation').\ |
---|
579 | get_values(location='centroids', |
---|
580 | indices=wet_elements) |
---|
581 | assert num.alltrue(wet_elevations < final_runup_height) |
---|
582 | assert num.allclose(wet_elevations, z) |
---|
583 | |
---|
584 | def test_get_maximum_inundation_from_sww(self): |
---|
585 | """test_get_maximum_inundation_from_sww(self) |
---|
586 | |
---|
587 | Test of get_maximum_inundation_elevation() |
---|
588 | and get_maximum_inundation_location() from data_manager.py |
---|
589 | |
---|
590 | This is based on test_get_maximum_inundation_3(self) but works with the |
---|
591 | stored results instead of with the internal data structure. |
---|
592 | |
---|
593 | This test uses the underlying get_maximum_inundation_data for tests |
---|
594 | """ |
---|
595 | |
---|
596 | from anuga.abstract_2d_finite_volumes.mesh_factory \ |
---|
597 | import rectangular_cross |
---|
598 | from data_manager import get_maximum_inundation_elevation |
---|
599 | from data_manager import get_maximum_inundation_location |
---|
600 | from data_manager import get_maximum_inundation_data |
---|
601 | |
---|
602 | initial_runup_height = -0.4 |
---|
603 | final_runup_height = -0.3 |
---|
604 | |
---|
605 | #-------------------------------------------------------------- |
---|
606 | # Setup computational domain |
---|
607 | #-------------------------------------------------------------- |
---|
608 | N = 10 |
---|
609 | points, vertices, boundary = rectangular_cross(N, N) |
---|
610 | domain = Domain(points, vertices, boundary) |
---|
611 | domain.set_name('runup_test') |
---|
612 | #domain.set_maximum_allowed_speed(1.0) |
---|
613 | |
---|
614 | # FIXME: This works better with old limiters so far |
---|
615 | #domain.tight_slope_limiters = 0 |
---|
616 | |
---|
617 | #-------------------------------------------------------------- |
---|
618 | # Setup initial conditions |
---|
619 | #-------------------------------------------------------------- |
---|
620 | def topography(x, y): |
---|
621 | return -x/2 # linear bed slope |
---|
622 | |
---|
623 | # Use function for elevation |
---|
624 | domain.set_quantity('elevation', topography) |
---|
625 | domain.set_quantity('friction', 0.) # Zero friction |
---|
626 | # Constant negative initial stage |
---|
627 | domain.set_quantity('stage', initial_runup_height) |
---|
628 | |
---|
629 | #-------------------------------------------------------------- |
---|
630 | # Setup boundary conditions |
---|
631 | #-------------------------------------------------------------- |
---|
632 | Br = Reflective_boundary(domain) # Reflective wall |
---|
633 | Bd = Dirichlet_boundary([final_runup_height, 0, 0]) # Constant inflow |
---|
634 | |
---|
635 | # All reflective to begin with (still water) |
---|
636 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
637 | |
---|
638 | #-------------------------------------------------------------- |
---|
639 | # Test initial inundation height |
---|
640 | #-------------------------------------------------------------- |
---|
641 | indices = domain.get_wet_elements() |
---|
642 | z = domain.get_quantity('elevation').\ |
---|
643 | get_values(location='centroids', indices=indices) |
---|
644 | assert num.alltrue(z < initial_runup_height) |
---|
645 | |
---|
646 | q_ref = domain.get_maximum_inundation_elevation() |
---|
647 | # First order accuracy |
---|
648 | assert num.allclose(q_ref, initial_runup_height, rtol=1.0/N) |
---|
649 | |
---|
650 | #-------------------------------------------------------------- |
---|
651 | # Let triangles adjust |
---|
652 | #-------------------------------------------------------------- |
---|
653 | for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0): |
---|
654 | pass |
---|
655 | |
---|
656 | #-------------------------------------------------------------- |
---|
657 | # Test inundation height again |
---|
658 | #-------------------------------------------------------------- |
---|
659 | q_ref = domain.get_maximum_inundation_elevation() |
---|
660 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
661 | msg = 'We got %f, should have been %f' % (q, q_ref) |
---|
662 | assert num.allclose(q, q_ref, rtol=1.0/N), msg |
---|
663 | |
---|
664 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
665 | msg = 'We got %f, should have been %f' % (q, initial_runup_height) |
---|
666 | assert num.allclose(q, initial_runup_height, rtol = 1.0/N), msg |
---|
667 | |
---|
668 | # Test error condition if time interval is out |
---|
669 | try: |
---|
670 | q = get_maximum_inundation_elevation('runup_test.sww', |
---|
671 | time_interval=[2.0, 3.0]) |
---|
672 | except ValueError: |
---|
673 | pass |
---|
674 | else: |
---|
675 | msg = 'should have caught wrong time interval' |
---|
676 | raise Exception, msg |
---|
677 | |
---|
678 | # Check correct time interval |
---|
679 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
680 | time_interval=[0.0, 3.0]) |
---|
681 | msg = 'We got %f, should have been %f' % (q, initial_runup_height) |
---|
682 | assert num.allclose(q, initial_runup_height, rtol = 1.0/N), msg |
---|
683 | assert num.allclose(-loc[0]/2, q) # From topography formula |
---|
684 | |
---|
685 | #-------------------------------------------------------------- |
---|
686 | # Update boundary to allow inflow |
---|
687 | #-------------------------------------------------------------- |
---|
688 | domain.set_boundary({'right': Bd}) |
---|
689 | |
---|
690 | #-------------------------------------------------------------- |
---|
691 | # Evolve system through time |
---|
692 | #-------------------------------------------------------------- |
---|
693 | q_max = None |
---|
694 | for t in domain.evolve(yieldstep = 0.1, finaltime = 3.0, |
---|
695 | skip_initial_step = True): |
---|
696 | q = domain.get_maximum_inundation_elevation() |
---|
697 | if q > q_max: |
---|
698 | q_max = q |
---|
699 | |
---|
700 | #-------------------------------------------------------------- |
---|
701 | # Test inundation height again |
---|
702 | #-------------------------------------------------------------- |
---|
703 | indices = domain.get_wet_elements() |
---|
704 | z = domain.get_quantity('elevation').\ |
---|
705 | get_values(location='centroids', indices=indices) |
---|
706 | |
---|
707 | assert num.alltrue(z < final_runup_height) |
---|
708 | |
---|
709 | q = domain.get_maximum_inundation_elevation() |
---|
710 | # First order accuracy |
---|
711 | assert num.allclose(q, final_runup_height, rtol=1.0/N) |
---|
712 | |
---|
713 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
714 | time_interval=[3.0, 3.0]) |
---|
715 | msg = 'We got %f, should have been %f' % (q, final_runup_height) |
---|
716 | assert num.allclose(q, final_runup_height, rtol=1.0/N), msg |
---|
717 | assert num.allclose(-loc[0]/2, q) # From topography formula |
---|
718 | |
---|
719 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
720 | loc = get_maximum_inundation_location('runup_test.sww') |
---|
721 | msg = 'We got %f, should have been %f' % (q, q_max) |
---|
722 | assert num.allclose(q, q_max, rtol=1.0/N), msg |
---|
723 | assert num.allclose(-loc[0]/2, q) # From topography formula |
---|
724 | |
---|
725 | q = get_maximum_inundation_elevation('runup_test.sww', |
---|
726 | time_interval=[0, 3]) |
---|
727 | msg = 'We got %f, should have been %f' % (q, q_max) |
---|
728 | assert num.allclose(q, q_max, rtol=1.0/N), msg |
---|
729 | |
---|
730 | # Check polygon mode |
---|
731 | # Runup region |
---|
732 | polygon = [[0.3, 0.0], [0.9, 0.0], [0.9, 1.0], [0.3, 1.0]] |
---|
733 | q = get_maximum_inundation_elevation('runup_test.sww', |
---|
734 | polygon = polygon, |
---|
735 | time_interval=[0, 3]) |
---|
736 | msg = 'We got %f, should have been %f' % (q, q_max) |
---|
737 | assert num.allclose(q, q_max, rtol=1.0/N), msg |
---|
738 | |
---|
739 | # Offshore region |
---|
740 | polygon = [[0.9, 0.0], [1.0, 0.0], [1.0, 1.0], [0.9, 1.0]] |
---|
741 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
742 | polygon = polygon, |
---|
743 | time_interval=[0, 3]) |
---|
744 | msg = 'We got %f, should have been %f' % (q, -0.475) |
---|
745 | assert num.allclose(q, -0.475, rtol=1.0/N), msg |
---|
746 | assert is_inside_polygon(loc, polygon) |
---|
747 | assert num.allclose(-loc[0]/2, q) # From topography formula |
---|
748 | |
---|
749 | # Dry region |
---|
750 | polygon = [[0.0, 0.0], [0.2, 0.0], [0.2, 1.0], [0.0, 1.0]] |
---|
751 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
752 | polygon = polygon, |
---|
753 | time_interval=[0, 3]) |
---|
754 | msg = 'We got %s, should have been None' % (q) |
---|
755 | assert q is None, msg |
---|
756 | msg = 'We got %s, should have been None' % (loc) |
---|
757 | assert loc is None, msg |
---|
758 | |
---|
759 | # Check what happens if no time point is within interval |
---|
760 | try: |
---|
761 | q = get_maximum_inundation_elevation('runup_test.sww', |
---|
762 | time_interval=[2.75, 2.75]) |
---|
763 | except AssertionError: |
---|
764 | pass |
---|
765 | else: |
---|
766 | msg = 'Time interval should have raised an exception' |
---|
767 | raise Exception, msg |
---|
768 | |
---|
769 | # Cleanup |
---|
770 | try: |
---|
771 | os.remove(domain.get_name() + '.sww') |
---|
772 | except: |
---|
773 | pass |
---|
774 | #FIXME(Ole): Windows won't allow removal of this |
---|
775 | |
---|
776 | |
---|
777 | |
---|
778 | |
---|
779 | |
---|
780 | def test_another_runup_example(self): |
---|
781 | """test_another_runup_example |
---|
782 | |
---|
783 | Test runup example where actual timeseries at interpolated |
---|
784 | points are tested. |
---|
785 | """ |
---|
786 | |
---|
787 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
788 | from anuga.abstract_2d_finite_volumes.mesh_factory \ |
---|
789 | import rectangular_cross |
---|
790 | from anuga.shallow_water import Domain |
---|
791 | from anuga.shallow_water import Reflective_boundary |
---|
792 | from anuga.shallow_water import Dirichlet_boundary |
---|
793 | |
---|
794 | #----------------------------------------------------------------- |
---|
795 | # Setup computational domain |
---|
796 | #----------------------------------------------------------------- |
---|
797 | points, vertices, boundary = rectangular_cross(10, 10) # Basic mesh |
---|
798 | domain = Domain(points, vertices, boundary) # Create domain |
---|
799 | domain.set_default_order(2) |
---|
800 | domain.set_quantities_to_be_stored(None) |
---|
801 | domain.H0 = 1.0e-3 |
---|
802 | |
---|
803 | #----------------------------------------------------------------- |
---|
804 | # Setup initial conditions |
---|
805 | #----------------------------------------------------------------- |
---|
806 | def topography(x, y): |
---|
807 | return -x/2 # linear bed slope |
---|
808 | |
---|
809 | domain.set_quantity('elevation', topography) |
---|
810 | domain.set_quantity('friction', 0.0) |
---|
811 | domain.set_quantity('stage', expression='elevation') |
---|
812 | |
---|
813 | #---------------------------------------------------------------- |
---|
814 | # Setup boundary conditions |
---|
815 | #---------------------------------------------------------------- |
---|
816 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
817 | Bd = Dirichlet_boundary([-0.2, 0., 0.]) # Constant boundary values |
---|
818 | domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) |
---|
819 | |
---|
820 | #---------------------------------------------------------------- |
---|
821 | # Evolve system through time |
---|
822 | #---------------------------------------------------------------- |
---|
823 | interpolation_points = [[0.4,0.5], [0.6,0.5], [0.8,0.5], [0.9,0.5]] |
---|
824 | gauge_values = [] |
---|
825 | for _ in interpolation_points: |
---|
826 | gauge_values.append([]) |
---|
827 | |
---|
828 | time = [] |
---|
829 | for t in domain.evolve(yieldstep=0.1, finaltime=5.0): |
---|
830 | # Record time series at known points |
---|
831 | time.append(domain.get_time()) |
---|
832 | |
---|
833 | stage = domain.get_quantity('stage') |
---|
834 | w = stage.get_values(interpolation_points=interpolation_points) |
---|
835 | |
---|
836 | for i, _ in enumerate(interpolation_points): |
---|
837 | gauge_values[i].append(w[i]) |
---|
838 | |
---|
839 | #Reference (nautilus 26/6/2008) |
---|
840 | |
---|
841 | G0 = [-0.20000000000000001, -0.20000000000000001, -0.20000000000000001, -0.1958465301767274, -0.19059602372752493, -0.18448466250700923, -0.16979321333876071, -0.15976372740651074, -0.1575649333345176, -0.15710373731900584, -0.1530922283220747, -0.18836084336565725, -0.19921529311644628, -0.19923451799698919, -0.19923795414410964, -0.19923178806924047, -0.19925157557666154, -0.19930747801697429, -0.1993266428576112, -0.19932004930281799, -0.19929691326931867, -0.19926285267313795, -0.19916645449780995, -0.1988942593296438, -0.19900620256621993, -0.19914327423060865, -0.19918708440899577, -0.19921557252449132, -0.1992404368022069, -0.19925070370697717, -0.19925975477892274, -0.1992671090445659, -0.19927254203777162, -0.19927631910959256, -0.19927843552031504, -0.19927880339239365, -0.19927763204453783, -0.19927545249577633, -0.19927289590622824, -0.19927076261495152, -0.19926974334736983, -0.19927002562760332, -0.19927138236272213, -0.1992734501064522, -0.19927573251318192, -0.19927778936001547, -0.1992793776883893, -0.19928040577720926, -0.19928092586206753, -0.19928110982948721, -0.19928118887248453] |
---|
842 | |
---|
843 | G1 = [-0.29999999999999993, -0.29999999999999993, -0.29139135018319512, -0.27257394456094503, -0.24141437432643265, -0.22089173942479151, -0.20796171092975532, -0.19874580192293825, -0.19014580508752857, -0.18421165368665365, -0.18020808282748838, -0.17518824759550247, -0.16436633464497749, -0.18714479115225544, -0.2045242886738807, -0.21011244240826329, -0.21151316017424124, -0.21048112933621732, -0.20772920477355789, -0.20489184334204144, -0.20286043930678221, -0.20094305756540246, -0.19948172752345467, -0.19886725178309209, -0.1986680808256765, -0.19860718133373548, -0.19862076543539733, -0.19888949069732539, -0.19932190310819023, -0.19982482967777454, -0.20036045468470615, -0.20064263130562704, -0.2007255389410077, -0.20068815669152493, -0.20057471332984647, -0.20042203940851802, -0.20026779013499779, -0.20015995671464712, -0.2000684005446525, -0.20001486753189174, -0.20000743467898013, -0.20003739771775905, -0.20008784600912621, -0.20013758305093884, -0.20017277554845025, -0.20018629233766885, -0.20018106288462198, -0.20016648079299326, -0.20015155958426531, -0.20014259747382254, -0.20014096648362509] |
---|
844 | |
---|
845 | |
---|
846 | G2 = [-0.40000000000000002, -0.38885199453206343, -0.33425057028323962, -0.30154253721772117, -0.27624597383474103, -0.26037811196890087, -0.24415404585285019, -0.22941383121091052, -0.21613496492144549, -0.20418199946908885, -0.19506212965221825, -0.18851924999737435, -0.18271143344718843, -0.16910750701722474, -0.17963775224176018, -0.19442870510406052, -0.20164216917300118, -0.20467219452758528, -0.20608246104917802, -0.20640259931640445, -0.2054749739152594, -0.20380549124050265, -0.20227296931678532, -0.20095834856297176, -0.20000430919304379, -0.19946673053844086, -0.1990733499211611, -0.19882136174363013, -0.19877442300323914, -0.19905182154377868, -0.19943266521643804, -0.19988524183849191, -0.20018905307631765, -0.20031895675727809, -0.20033991149804931, -0.20031574232920274, -0.20027004750680638, -0.20020472427796293, -0.20013382447039607, -0.2000635018536408, -0.20001515436367642, -0.19998427691514989, -0.19997263083178107, -0.19998545383896535, -0.20000134502238734, -0.2000127243362736, -0.20001564474711939, -0.20001267360809977, -0.20002707579781318, -0.20004087961702843, -0.20004212947389177] |
---|
847 | |
---|
848 | G3 = [-0.45000000000000001, -0.38058172993544187, -0.33756059941741273, -0.31015371357441396, -0.29214769368562965, -0.27545447937118606, -0.25871585649808154, -0.24254276680581988, -0.22758633129006092, -0.21417276895743134, -0.20237184768790789, -0.19369491041576814, -0.18721625333717057, -0.1794243868465818, -0.17052113574042196, -0.18534300640363346, -0.19601184621026671, -0.20185028431829469, -0.20476187496918136, -0.20602933256960082, -0.20598569228739247, -0.20492643756666848, -0.20339695828762758, -0.20196440373022595, -0.20070304052919338, -0.19986227854052355, -0.19933020476408528, -0.19898034831018035, -0.19878317651286193, -0.19886879323961787, -0.19915860801206181, -0.19953675278099042, -0.19992828019602107, -0.20015957043092364, -0.20025268671087426, -0.20028559516444974, -0.20027084877341045, -0.20022991487243985, -0.20016234295579871, -0.20009131445092507, -0.20003149397006523, -0.19998473356473795, -0.19996011913447218, -0.19995647168667186, -0.19996526209120422, -0.19996600297827097, -0.19997268800221216, -0.19998682275066659, -0.20000372259781876, -0.20001628681983963, -0.2000173314086407] |
---|
849 | |
---|
850 | assert num.allclose(gauge_values[0], G0) |
---|
851 | assert num.allclose(gauge_values[1], G1) |
---|
852 | assert num.allclose(gauge_values[2], G2) |
---|
853 | assert num.allclose(gauge_values[3], G3) |
---|
854 | |
---|
855 | ##################################################### |
---|
856 | |
---|
857 | |
---|
858 | def test_initial_condition(self): |
---|
859 | """test_initial_condition |
---|
860 | |
---|
861 | Test that initial condition is output at time == 0 and that |
---|
862 | computed values change as system evolves |
---|
863 | """ |
---|
864 | |
---|
865 | from anuga.config import g |
---|
866 | import copy |
---|
867 | |
---|
868 | a = [0.0, 0.0] |
---|
869 | b = [0.0, 2.0] |
---|
870 | c = [2.0, 0.0] |
---|
871 | d = [0.0, 4.0] |
---|
872 | e = [2.0, 2.0] |
---|
873 | f = [4.0, 0.0] |
---|
874 | |
---|
875 | points = [a, b, c, d, e, f] |
---|
876 | # bac, bce, ecf, dbe |
---|
877 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
878 | |
---|
879 | domain = Domain(points, vertices) |
---|
880 | |
---|
881 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
882 | def slope(x, y): |
---|
883 | return 3*x |
---|
884 | |
---|
885 | h = 0.1 |
---|
886 | def stage(x, y): |
---|
887 | return slope(x, y) + h |
---|
888 | |
---|
889 | domain.set_quantity('elevation', slope) |
---|
890 | domain.set_quantity('stage', stage) |
---|
891 | |
---|
892 | # Allow slope limiters to work |
---|
893 | # (FIXME (Ole): Shouldn't this be automatic in ANUGA?) |
---|
894 | domain.distribute_to_vertices_and_edges() |
---|
895 | |
---|
896 | initial_stage = copy.copy(domain.quantities['stage'].vertex_values) |
---|
897 | |
---|
898 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
899 | |
---|
900 | domain.optimise_dry_cells = True |
---|
901 | |
---|
902 | #Evolution |
---|
903 | for t in domain.evolve(yieldstep=0.5, finaltime=2.0): |
---|
904 | stage = domain.quantities['stage'].vertex_values |
---|
905 | |
---|
906 | if t == 0.0: |
---|
907 | assert num.allclose(stage, initial_stage) |
---|
908 | else: |
---|
909 | assert not num.allclose(stage, initial_stage) |
---|
910 | |
---|
911 | os.remove(domain.get_name() + '.sww') |
---|
912 | |
---|
913 | ##################################################### |
---|
914 | |
---|
915 | def test_second_order_flat_bed_onestep(self): |
---|
916 | from mesh_factory import rectangular |
---|
917 | |
---|
918 | #Create basic mesh |
---|
919 | points, vertices, boundary = rectangular(6, 6) |
---|
920 | |
---|
921 | #Create shallow water domain |
---|
922 | domain = Domain(points, vertices, boundary) |
---|
923 | domain.set_default_order(2) |
---|
924 | |
---|
925 | # Boundary conditions |
---|
926 | Br = Reflective_boundary(domain) |
---|
927 | Bd = Dirichlet_boundary([0.1, 0., 0.]) |
---|
928 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
929 | |
---|
930 | domain.check_integrity() |
---|
931 | |
---|
932 | # Evolution |
---|
933 | for t in domain.evolve(yieldstep=0.05, finaltime=0.05): |
---|
934 | pass |
---|
935 | |
---|
936 | |
---|
937 | # Data from earlier version of abstract_2d_finite_volumes |
---|
938 | assert num.allclose(domain.recorded_min_timestep, 0.0396825396825) or \ |
---|
939 | num.allclose(domain.recorded_min_timestep, 0.0235282801879) |
---|
940 | |
---|
941 | assert num.allclose(domain.recorded_max_timestep, 0.0396825396825) or \ |
---|
942 | num.allclose(domain.recorded_max_timestep, 0.0235282801879) |
---|
943 | |
---|
944 | |
---|
945 | |
---|
946 | assert num.allclose(domain.quantities['stage'].centroid_values[:12], |
---|
947 | [0.00171396, 0.02656103, 0.00241523, 0.02656103, |
---|
948 | 0.00241523, 0.02656103, 0.00241523, 0.02656103, |
---|
949 | 0.00241523, 0.02656103, 0.00241523, 0.0272623], atol=1.0e-3) or \ |
---|
950 | num.allclose(domain.quantities['stage'].centroid_values[:12], |
---|
951 | [ 0.00053119, 0.02900893, 0.00077912, 0.02900893, |
---|
952 | 0.00077912, 0.02900893, 0.00077912, 0.02900893, |
---|
953 | 0.00077912, 0.02900893, 0.00077912, 0.02873746], atol=1.0e-3) |
---|
954 | |
---|
955 | domain.distribute_to_vertices_and_edges() |
---|
956 | |
---|
957 | |
---|
958 | |
---|
959 | assert num.allclose(domain.quantities['stage'].vertex_values[:12,0], |
---|
960 | [ -1.96794125e-03, 2.65610347e-02, 0.00000000e+00, 2.65610347e-02, |
---|
961 | -8.67361738e-19, 2.65610347e-02, 4.33680869e-19, 2.65610347e-02, |
---|
962 | -2.16840434e-18, 2.65610347e-02, -9.44042339e-05, 2.72623006e-02], |
---|
963 | atol =1.0e-3) or \ |
---|
964 | num.allclose(domain.quantities['stage'].vertex_values[:12,0], |
---|
965 | [ -5.51381419e-04, 5.74866732e-02, 1.00006808e-15, 5.72387383e-02, |
---|
966 | 9.99851243e-16, 5.72387383e-02, 1.00050176e-15, 5.72387383e-02, |
---|
967 | 9.99417563e-16, 5.72387383e-02, 1.09882029e-05, 5.66957956e-02], |
---|
968 | atol=1.0e-3) |
---|
969 | |
---|
970 | |
---|
971 | assert num.allclose(domain.quantities['stage'].vertex_values[:12,1], |
---|
972 | [ 5.14188587e-03, 2.65610347e-02, 0.00000000e+00, 2.65610347e-02, |
---|
973 | 8.67361738e-19, 2.65610347e-02, -4.33680869e-19, 2.65610347e-02, |
---|
974 | 1.30104261e-18, 2.65610347e-02, 9.44042339e-05, 2.72623006e-02], |
---|
975 | atol =1.0e-3) or \ |
---|
976 | num.allclose(domain.quantities['stage'].vertex_values[:12,1], |
---|
977 | [ 1.59356551e-03, 5.72387383e-02, 1.00006808e-15, 5.72387383e-02, |
---|
978 | 1.00006808e-15, 5.72387383e-02, 9.99634403e-16, 5.72387383e-02, |
---|
979 | 1.00050176e-15, 5.72387383e-02, -1.09882029e-05, 1.47582915e-02], |
---|
980 | atol =1.0e-3) |
---|
981 | |
---|
982 | assert num.allclose(domain.quantities['stage'].vertex_values[:12,2], |
---|
983 | [ 0.00196794, 0.02656103, 0.00724568, 0.02656103, |
---|
984 | 0.00724568, 0.02656103, 0.00724568, 0.02656103, |
---|
985 | 0.00724568, 0.02656103, 0.00724568, 0.0272623 ], atol =1.0e-3) or \ |
---|
986 | num.allclose(domain.quantities['stage'].vertex_values[:12,2], |
---|
987 | [ 0.00055138, -0.02769862, 0.00233737, -0.02745068, |
---|
988 | 0.00233737, -0.02745068, 0.00233737, -0.02745068, |
---|
989 | 0.00233737, -0.02745068, 0.00233737, 0.01475829], atol =1.0e-3) |
---|
990 | |
---|
991 | |
---|
992 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[:12], |
---|
993 | [0.00113961, 0.01302432, 0.00148672, |
---|
994 | 0.01302432, 0.00148672, 0.01302432, |
---|
995 | 0.00148672, 0.01302432, 0.00148672 , |
---|
996 | 0.01302432, 0.00148672, 0.01337143], atol=1.0e-3) or \ |
---|
997 | num.allclose(domain.quantities['xmomentum'].centroid_values[:12], |
---|
998 | [ 0.00019529, 0.01425863, 0.00025665, |
---|
999 | 0.01425863, 0.00025665, 0.01425863, |
---|
1000 | 0.00025665, 0.01425863, 0.00025665, |
---|
1001 | 0.01425863, 0.00025665, 0.014423 ], atol=1.0e-3) |
---|
1002 | |
---|
1003 | assert num.allclose(domain.quantities['ymomentum'].centroid_values[:12], |
---|
1004 | [-2.91240050e-004 , 1.22721531e-004, |
---|
1005 | -1.22721531e-004, 1.22721531e-004 , |
---|
1006 | -1.22721531e-004, 1.22721531e-004, |
---|
1007 | -1.22721531e-004 , 1.22721531e-004, |
---|
1008 | -1.22721531e-004, 1.22721531e-004, |
---|
1009 | -1.22721531e-004, -4.57969873e-005], atol=1.0e-5) or \ |
---|
1010 | num.allclose(domain.quantities['ymomentum'].centroid_values[:12], |
---|
1011 | [ -6.38239364e-05, 2.16943067e-05, |
---|
1012 | -2.16943067e-05, 2.16943067e-05, |
---|
1013 | -2.16943067e-05, 2.16943067e-05, |
---|
1014 | -2.16943067e-05, 2.16943067e-05, |
---|
1015 | -2.16943067e-05, 2.16943067e-05, |
---|
1016 | -2.16943067e-05, -4.62796434e-04], atol=1.0e-5) |
---|
1017 | |
---|
1018 | os.remove(domain.get_name() + '.sww') |
---|
1019 | |
---|
1020 | def test_second_order_flat_bed_moresteps(self): |
---|
1021 | from mesh_factory import rectangular |
---|
1022 | |
---|
1023 | # Create basic mesh |
---|
1024 | points, vertices, boundary = rectangular(6, 6) |
---|
1025 | |
---|
1026 | # Create shallow water domain |
---|
1027 | domain = Domain(points, vertices, boundary) |
---|
1028 | domain.smooth = False |
---|
1029 | domain.default_order = 2 |
---|
1030 | |
---|
1031 | # Boundary conditions |
---|
1032 | Br = Reflective_boundary(domain) |
---|
1033 | Bd = Dirichlet_boundary([0.1, 0., 0.]) |
---|
1034 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1035 | |
---|
1036 | domain.check_integrity() |
---|
1037 | |
---|
1038 | # Evolution |
---|
1039 | for t in domain.evolve(yieldstep=0.05, finaltime=0.1): |
---|
1040 | pass |
---|
1041 | |
---|
1042 | # Data from earlier version of abstract_2d_finite_volumes |
---|
1043 | #assert allclose(domain.recorded_min_timestep, 0.0396825396825) |
---|
1044 | #assert allclose(domain.recorded_max_timestep, 0.0396825396825) |
---|
1045 | #print domain.quantities['stage'].centroid_values |
---|
1046 | |
---|
1047 | os.remove(domain.get_name() + '.sww') |
---|
1048 | |
---|
1049 | def test_flatbed_first_order(self): |
---|
1050 | from mesh_factory import rectangular |
---|
1051 | |
---|
1052 | # Create basic mesh |
---|
1053 | N = 8 |
---|
1054 | points, vertices, boundary = rectangular(N, N) |
---|
1055 | |
---|
1056 | # Create shallow water domain |
---|
1057 | domain = Domain(points, vertices, boundary) |
---|
1058 | domain.smooth = False |
---|
1059 | domain.default_order = 1 |
---|
1060 | domain.H0 = 1.0e-3 # As suggested in the manual |
---|
1061 | |
---|
1062 | # Boundary conditions |
---|
1063 | Br = Reflective_boundary(domain) |
---|
1064 | Bd = Dirichlet_boundary([0.2, 0., 0.]) |
---|
1065 | |
---|
1066 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1067 | domain.check_integrity() |
---|
1068 | |
---|
1069 | # Evolution |
---|
1070 | for t in domain.evolve(yieldstep=0.02, finaltime=0.5): |
---|
1071 | pass |
---|
1072 | |
---|
1073 | # FIXME: These numbers were from version before 25/10 |
---|
1074 | #assert allclose(domain.recorded_min_timestep, 0.0140413643926) |
---|
1075 | #assert allclose(domain.recorded_max_timestep, 0.0140947355753) |
---|
1076 | |
---|
1077 | for i in range(3): |
---|
1078 | #assert allclose(domain.quantities['stage'].edge_values[:4,i], |
---|
1079 | # [0.10730244,0.12337617,0.11200126,0.12605666]) |
---|
1080 | assert num.allclose(domain.quantities['xmomentum'].\ |
---|
1081 | edge_values[:4,i], |
---|
1082 | [0.07610894,0.06901572,0.07284461,0.06819712]) |
---|
1083 | #assert allclose(domain.quantities['ymomentum'].edge_values[:4,i], |
---|
1084 | # [-0.0060238, -0.00157404, -0.00309633, -0.0001637]) |
---|
1085 | |
---|
1086 | os.remove(domain.get_name() + '.sww') |
---|
1087 | |
---|
1088 | def test_flatbed_second_order(self): |
---|
1089 | from mesh_factory import rectangular |
---|
1090 | |
---|
1091 | # Create basic mesh |
---|
1092 | N = 8 |
---|
1093 | points, vertices, boundary = rectangular(N, N) |
---|
1094 | |
---|
1095 | # Create shallow water domain |
---|
1096 | domain = Domain(points, vertices, boundary) |
---|
1097 | domain.set_store_vertices_uniquely(True) |
---|
1098 | domain.set_default_order(2) |
---|
1099 | |
---|
1100 | # Boundary conditions |
---|
1101 | Br = Reflective_boundary(domain) |
---|
1102 | Bd = Dirichlet_boundary([0.2, 0., 0.]) |
---|
1103 | |
---|
1104 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1105 | domain.check_integrity() |
---|
1106 | |
---|
1107 | # Evolution |
---|
1108 | for t in domain.evolve(yieldstep=0.01, finaltime=0.03): |
---|
1109 | pass |
---|
1110 | |
---|
1111 | |
---|
1112 | |
---|
1113 | msg = 'min step was %f instead of %f' % (domain.recorded_min_timestep, |
---|
1114 | 0.0155604907816) |
---|
1115 | |
---|
1116 | assert num.allclose(domain.recorded_min_timestep, 0.0155604907816), msg |
---|
1117 | assert num.allclose(domain.recorded_max_timestep, 0.0155604907816) |
---|
1118 | |
---|
1119 | |
---|
1120 | assert num.allclose(domain.quantities['stage'].vertex_values[:4,0], |
---|
1121 | [-0.009, 0.0535, 0.0, 0.0535], atol=1.0e-3) or \ |
---|
1122 | num.allclose(domain.quantities['stage'].vertex_values[:4,0], |
---|
1123 | [-3.54158995e-03,1.22050959e-01,-2.36227400e-05,1.21501627e-01], atol=1.0e-3) |
---|
1124 | |
---|
1125 | |
---|
1126 | assert num.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
1127 | [-0.008, 0.0368, 0.0, 0.0368], atol=1.0e-3) or \ |
---|
1128 | num.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
1129 | [-2.32056226e-03,9.10618822e-02, -1.06135035e-05,9.75175956e-02], atol=1.0e-3) |
---|
1130 | |
---|
1131 | assert num.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
1132 | [ 0.002 , 6.0e-04, 0.0, 6.0e-04], |
---|
1133 | atol=1.0e-3) or \ |
---|
1134 | num.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
1135 | [ 1.43500775e-03, 6.07102924e-05, 1.59329371e-06, 8.44572599e-03], |
---|
1136 | atol=1.0e-3) |
---|
1137 | |
---|
1138 | os.remove(domain.get_name() + '.sww') |
---|
1139 | |
---|
1140 | |
---|
1141 | def test_flatbed_second_order_vmax_0(self): |
---|
1142 | from mesh_factory import rectangular |
---|
1143 | |
---|
1144 | # Create basic mesh |
---|
1145 | N = 8 |
---|
1146 | points, vertices, boundary = rectangular(N, N) |
---|
1147 | |
---|
1148 | # Create shallow water domain |
---|
1149 | domain = Domain(points, vertices, boundary) |
---|
1150 | |
---|
1151 | domain.set_store_vertices_uniquely(True) |
---|
1152 | domain.set_default_order(2) |
---|
1153 | |
---|
1154 | |
---|
1155 | # Boundary conditions |
---|
1156 | Br = Reflective_boundary(domain) |
---|
1157 | Bd = Dirichlet_boundary([0.2, 0., 0.]) |
---|
1158 | |
---|
1159 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1160 | domain.check_integrity() |
---|
1161 | |
---|
1162 | # Evolution |
---|
1163 | for t in domain.evolve(yieldstep=0.01, finaltime=0.03): |
---|
1164 | pass |
---|
1165 | |
---|
1166 | |
---|
1167 | assert num.allclose(domain.recorded_min_timestep, 0.0210448446782) or \ |
---|
1168 | num.allclose(domain.recorded_min_timestep, 0.0155604907816) |
---|
1169 | |
---|
1170 | assert num.allclose(domain.recorded_max_timestep, 0.0210448446782) or \ |
---|
1171 | num.allclose(domain.recorded_min_timestep, 0.0155604907816) |
---|
1172 | |
---|
1173 | |
---|
1174 | assert num.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
1175 | [ -2.32056226e-03, 9.10618822e-02, -1.06135035e-05, 9.75175956e-02], |
---|
1176 | atol=1.0e-3) |
---|
1177 | |
---|
1178 | assert num.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
1179 | [ 1.43500775e-03, 6.07102924e-05, 1.59329371e-06, 8.44572599e-03], |
---|
1180 | atol=1.0e-3) |
---|
1181 | |
---|
1182 | os.remove(domain.get_name() + '.sww') |
---|
1183 | |
---|
1184 | def test_flatbed_second_order_distribute(self): |
---|
1185 | #Use real data from anuga.abstract_2d_finite_volumes 2 |
---|
1186 | #painfully setup and extracted. |
---|
1187 | |
---|
1188 | from mesh_factory import rectangular |
---|
1189 | |
---|
1190 | # Create basic mesh |
---|
1191 | N = 8 |
---|
1192 | points, vertices, boundary = rectangular(N, N) |
---|
1193 | |
---|
1194 | # Create shallow water domain |
---|
1195 | domain = Domain(points, vertices, boundary) |
---|
1196 | |
---|
1197 | domain.set_store_vertices_uniquely(True) |
---|
1198 | domain.set_default_order(2) |
---|
1199 | |
---|
1200 | # Boundary conditions |
---|
1201 | Br = Reflective_boundary(domain) |
---|
1202 | Bd = Dirichlet_boundary([0.2, 0., 0.]) |
---|
1203 | |
---|
1204 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1205 | domain.check_integrity() |
---|
1206 | |
---|
1207 | for V in [False, True]: |
---|
1208 | if V: |
---|
1209 | # Set centroids as if system had been evolved |
---|
1210 | L = num.zeros(2*N*N, num.float) |
---|
1211 | L[:32] = [7.21205592e-003, 5.35214298e-002, 1.00910824e-002, |
---|
1212 | 5.35439433e-002, 1.00910824e-002, 5.35439433e-002, |
---|
1213 | 1.00910824e-002, 5.35439433e-002, 1.00910824e-002, |
---|
1214 | 5.35439433e-002, 1.00910824e-002, 5.35439433e-002, |
---|
1215 | 1.00910824e-002, 5.35393928e-002, 1.02344264e-002, |
---|
1216 | 5.59605058e-002, 0.00000000e+000, 3.31027800e-004, |
---|
1217 | 0.00000000e+000, 4.37962142e-005, 0.00000000e+000, |
---|
1218 | 4.37962142e-005, 0.00000000e+000, 4.37962142e-005, |
---|
1219 | 0.00000000e+000, 4.37962142e-005, 0.00000000e+000, |
---|
1220 | 4.37962142e-005, 0.00000000e+000, 4.37962142e-005, |
---|
1221 | 0.00000000e+000, 5.57305948e-005] |
---|
1222 | |
---|
1223 | X = num.zeros(2*N*N, num.float) |
---|
1224 | X[:32] = [6.48351607e-003, 3.68571894e-002, 8.50733285e-003, |
---|
1225 | 3.68731327e-002, 8.50733285e-003, 3.68731327e-002, |
---|
1226 | 8.50733285e-003, 3.68731327e-002, 8.50733285e-003, |
---|
1227 | 3.68731327e-002, 8.50733285e-003, 3.68731327e-002, |
---|
1228 | 8.50733285e-003, 3.68693861e-002, 8.65220973e-003, |
---|
1229 | 3.85055387e-002, 0.00000000e+000, 2.86060840e-004, |
---|
1230 | 0.00000000e+000, 3.58905503e-005, 0.00000000e+000, |
---|
1231 | 3.58905503e-005, 0.00000000e+000, 3.58905503e-005, |
---|
1232 | 0.00000000e+000, 3.58905503e-005, 0.00000000e+000, |
---|
1233 | 3.58905503e-005, 0.00000000e+000, 3.58905503e-005, |
---|
1234 | 0.00000000e+000, 4.57662812e-005] |
---|
1235 | |
---|
1236 | Y = num.zeros(2*N*N, num.float) |
---|
1237 | Y[:32] = [-1.39463104e-003, 6.15600298e-004, -6.03637382e-004, |
---|
1238 | 6.18272251e-004, -6.03637382e-004, 6.18272251e-004, |
---|
1239 | -6.03637382e-004, 6.18272251e-004, -6.03637382e-004, |
---|
1240 | 6.18272251e-004, -6.03637382e-004, 6.18272251e-004, |
---|
1241 | -6.03637382e-004, 6.18599320e-004, -6.74622797e-004, |
---|
1242 | -1.48934756e-004, 0.00000000e+000, -5.35079969e-005, |
---|
1243 | 0.00000000e+000, -2.57264987e-005, 0.00000000e+000, |
---|
1244 | -2.57264987e-005, 0.00000000e+000, -2.57264987e-005, |
---|
1245 | 0.00000000e+000, -2.57264987e-005, 0.00000000e+000, |
---|
1246 | -2.57264987e-005, 0.00000000e+000, -2.57264987e-005, |
---|
1247 | 0.00000000e+000, -2.57635178e-005] |
---|
1248 | |
---|
1249 | domain.set_quantity('stage', L, location='centroids') |
---|
1250 | domain.set_quantity('xmomentum', X, location='centroids') |
---|
1251 | domain.set_quantity('ymomentum', Y, location='centroids') |
---|
1252 | |
---|
1253 | domain.check_integrity() |
---|
1254 | else: |
---|
1255 | # Evolution |
---|
1256 | for t in domain.evolve(yieldstep=0.01, finaltime=0.03): |
---|
1257 | pass |
---|
1258 | |
---|
1259 | |
---|
1260 | assert num.allclose(domain.recorded_min_timestep, 0.0155604907816) |
---|
1261 | assert num.allclose(domain.recorded_max_timestep, 0.0155604907816) |
---|
1262 | |
---|
1263 | #print domain.quantities['stage'].centroid_values[:4] |
---|
1264 | #print domain.quantities['xmomentum'].centroid_values[:4] |
---|
1265 | #print domain.quantities['ymomentum'].centroid_values[:4] |
---|
1266 | |
---|
1267 | #Centroids were correct but not vertices. |
---|
1268 | #Hence the check of distribute below. |
---|
1269 | |
---|
1270 | if not V: |
---|
1271 | |
---|
1272 | assert num.allclose(domain.quantities['stage'].centroid_values[:4], |
---|
1273 | [0.00725574, 0.05350737, 0.01008413, 0.0535293], atol=1.0e-3) or \ |
---|
1274 | num.allclose(domain.quantities['stage'].centroid_values[:4], |
---|
1275 | [0.00318259, 0.06261678, 0.00420215, 0.06285189], atol=1.0e-3) |
---|
1276 | |
---|
1277 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[:4], |
---|
1278 | [0.00654964, 0.03684904, 0.00852561, 0.03686323],atol=1.0e-3) or \ |
---|
1279 | num.allclose(domain.quantities['xmomentum'].centroid_values[:4], |
---|
1280 | [0.00218173, 0.04482164, 0.0026334, 0.04491656],atol=1.0e-3) |
---|
1281 | |
---|
1282 | assert num.allclose(domain.quantities['ymomentum'].centroid_values[:4], |
---|
1283 | [-0.00143169, 0.00061027, -0.00062325, 0.00061408],atol=1.0e-3) or \ |
---|
1284 | num.allclose(domain.quantities['ymomentum'].centroid_values[:4], |
---|
1285 | [-6.46340592e-04,-6.16702557e-05,-2.83424134e-04, 6.48556590e-05],atol=1.0e-3) |
---|
1286 | |
---|
1287 | |
---|
1288 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[17], 0.0, |
---|
1289 | atol=3.0e-4) |
---|
1290 | else: |
---|
1291 | assert num.allclose(domain.quantities['xmomentum'].\ |
---|
1292 | centroid_values[17], |
---|
1293 | 0.00028606084) |
---|
1294 | return #FIXME - Bailout for V True |
---|
1295 | |
---|
1296 | import copy |
---|
1297 | |
---|
1298 | XX = copy.copy(domain.quantities['xmomentum'].centroid_values) |
---|
1299 | assert num.allclose(domain.quantities['xmomentum'].centroid_values, |
---|
1300 | XX) |
---|
1301 | |
---|
1302 | domain.distribute_to_vertices_and_edges() |
---|
1303 | |
---|
1304 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[17], 0.0, atol=3.0e-4) |
---|
1305 | |
---|
1306 | assert num.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
1307 | [ 1.84104149e-03, 6.05658846e-04, 1.77092716e-07, 6.10687334e-04], |
---|
1308 | atol=1.0e-4) or \ |
---|
1309 | num.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
1310 | [1.43500775e-03, 6.07102924e-05, 1.59329371e-06, 8.44572599e-03], |
---|
1311 | atol=1.0e-4) |
---|
1312 | |
---|
1313 | assert num.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
1314 | [ -8.31184293e-03, 3.68841505e-02, -2.42843889e-06, 3.68900189e-02], |
---|
1315 | atol=1.0e-4) or \ |
---|
1316 | num.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
1317 | [-2.32056226e-03, 9.10618822e-02, -1.06135035e-05, 9.75175956e-02], |
---|
1318 | rtol=1.0e-2) |
---|
1319 | |
---|
1320 | |
---|
1321 | os.remove(domain.get_name() + '.sww') |
---|
1322 | |
---|
1323 | |
---|
1324 | def test_bedslope_problem_second_order_more_steps(self): |
---|
1325 | """test_bedslope_problem_second_order_more_step |
---|
1326 | |
---|
1327 | Test shallow water balanced finite volumes |
---|
1328 | """ |
---|
1329 | |
---|
1330 | from mesh_factory import rectangular |
---|
1331 | |
---|
1332 | # Create basic mesh |
---|
1333 | points, vertices, boundary = rectangular(6, 6) |
---|
1334 | |
---|
1335 | # Create shallow water domain |
---|
1336 | domain = Domain(points, vertices, boundary) |
---|
1337 | |
---|
1338 | domain.set_store_vertices_uniquely(True) |
---|
1339 | domain.set_default_order(2) |
---|
1340 | |
---|
1341 | # Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
1342 | def x_slope(x, y): |
---|
1343 | return -x/3 |
---|
1344 | |
---|
1345 | domain.set_quantity('elevation', x_slope) |
---|
1346 | |
---|
1347 | # Boundary conditions |
---|
1348 | Br = Reflective_boundary(domain) |
---|
1349 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1350 | |
---|
1351 | # Initial condition |
---|
1352 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
1353 | domain.check_integrity() |
---|
1354 | |
---|
1355 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
1356 | [ 0.01296296, 0.03148148, 0.01296296, |
---|
1357 | 0.03148148, 0.01296296, 0.03148148, |
---|
1358 | 0.01296296, 0.03148148, 0.01296296, |
---|
1359 | 0.03148148, 0.01296296, 0.03148148, |
---|
1360 | -0.04259259, -0.02407407, -0.04259259, |
---|
1361 | -0.02407407, -0.04259259, -0.02407407, |
---|
1362 | -0.04259259, -0.02407407, -0.04259259, |
---|
1363 | -0.02407407, -0.04259259, -0.02407407, |
---|
1364 | -0.09814815, -0.07962963, -0.09814815, |
---|
1365 | -0.07962963, -0.09814815, -0.07962963, |
---|
1366 | -0.09814815, -0.07962963, -0.09814815, |
---|
1367 | -0.07962963, -0.09814815, -0.07962963, |
---|
1368 | -0.1537037 , -0.13518519, -0.1537037, |
---|
1369 | -0.13518519, -0.1537037, -0.13518519, |
---|
1370 | -0.1537037 , -0.13518519, -0.1537037, |
---|
1371 | -0.13518519, -0.1537037, -0.13518519, |
---|
1372 | -0.20925926, -0.19074074, -0.20925926, |
---|
1373 | -0.19074074, -0.20925926, -0.19074074, |
---|
1374 | -0.20925926, -0.19074074, -0.20925926, |
---|
1375 | -0.19074074, -0.20925926, -0.19074074, |
---|
1376 | -0.26481481, -0.2462963, -0.26481481, |
---|
1377 | -0.2462963, -0.26481481, -0.2462963, |
---|
1378 | -0.26481481, -0.2462963, -0.26481481, |
---|
1379 | -0.2462963, -0.26481481, -0.2462963]) |
---|
1380 | |
---|
1381 | # Evolution |
---|
1382 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.5): |
---|
1383 | pass |
---|
1384 | |
---|
1385 | |
---|
1386 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
1387 | [-0.02901283, -0.01619385, -0.03040423, -0.01564474, -0.02936756, -0.01507953, |
---|
1388 | -0.02858108, -0.01491531, -0.02793549, -0.0147037, -0.02792804, -0.014363, |
---|
1389 | -0.07794301, -0.05951952, -0.07675098, -0.06182336, -0.07736607, -0.06079504, |
---|
1390 | -0.07696764, -0.06039043, -0.07708793, -0.0601453, -0.07669911, -0.06020719, |
---|
1391 | -0.12223185, -0.10857309, -0.12286676, -0.10837591, -0.12386938, -0.10842744, |
---|
1392 | -0.12363769, -0.10790002, -0.12304837, -0.10871278, -0.12543768, -0.10961026, |
---|
1393 | -0.15664473, -0.14630207, -0.15838364, -0.14910271, -0.15804002, -0.15029627, |
---|
1394 | -0.15829717, -0.1503869, -0.15852604, -0.14971109, -0.15856346, -0.15205092, |
---|
1395 | -0.20900931, -0.19658843, -0.20669607, -0.19558708, -0.20654186, -0.19492423, |
---|
1396 | -0.20438765, -0.19492931, -0.20644142, -0.19423147, -0.20237449, -0.19198454, |
---|
1397 | -0.13699658, -0.14209126, -0.13600697, -0.14334968, -0.1347657, -0.14224247, |
---|
1398 | -0.13442376, -0.14136926, -0.13501004, -0.14339389, -0.13479263, -0.14304073], atol=1.0e-2) or \ |
---|
1399 | num.allclose(domain.quantities['stage'].centroid_values, |
---|
1400 | [-0.03393968, -0.0166423, -0.03253538, -0.01722023, -0.03270405, -0.01728606, |
---|
1401 | -0.03277786, -0.0173903, -0.03333736, -0.01743236, -0.03189526, -0.01463918, |
---|
1402 | -0.07951756, -0.06410763, -0.07847973, -0.06350794, -0.07842429, -0.06240852, |
---|
1403 | -0.07808697, -0.06255924, -0.07854662, -0.06322442, -0.07867314, -0.06287121, |
---|
1404 | -0.11533356, -0.10559238, -0.11971301, -0.10742123, -0.1215759 , -0.10830046, |
---|
1405 | -0.12202867, -0.10831703, -0.122214, -0.10854099, -0.12343779, -0.11035803, |
---|
1406 | -0.15725714, -0.14300757, -0.15559898, -0.1447275 , -0.15478568, -0.14483551, |
---|
1407 | -0.15461918, -0.14489704, -0.15462074, -0.14516256, -0.15522298, -0.1452902, |
---|
1408 | -0.22637615, -0.19192974, -0.20922654, -0.1907441 , -0.20900039, -0.19074809, |
---|
1409 | -0.20897969, -0.19073365, -0.209195, -0.19071396, -0.20922513, -0.19067714, |
---|
1410 | -0.11357515, -0.14185801, -0.13224763, -0.14395805, -0.13379438, -0.14497114, |
---|
1411 | -0.13437773, -0.14536013, -0.13607796, -0.14799629, -0.13148351, -0.15568502], atol=1.0e-1) |
---|
1412 | |
---|
1413 | |
---|
1414 | |
---|
1415 | assert num.allclose(domain.quantities['xmomentum'].centroid_values, |
---|
1416 | [ 0.00478273, 0.003297, 0.00471129, 0.00320957, 0.00462171, 0.00320135, |
---|
1417 | 0.00458295, 0.00317193, 0.00451704, 0.00314308, 0.00442684, 0.00320466, |
---|
1418 | 0.01512907, 0.01150756, 0.01604672, 0.01156605, 0.01583911, 0.01135809, |
---|
1419 | 0.01578499, 0.01132479, 0.01543668, 0.01100614, 0.01570445, 0.0120152, |
---|
1420 | 0.04019477, 0.02721469, 0.03509982, 0.02735229, 0.03369315, 0.02727871, |
---|
1421 | 0.03317931, 0.02706421, 0.03332704, 0.02722779, 0.03170258, 0.02556134, |
---|
1422 | 0.07157025, 0.06074271, 0.07249738, 0.05570979, 0.07311261, 0.05428175, |
---|
1423 | 0.07316986, 0.05379702, 0.0719581, 0.05230996, 0.07034837, 0.05468702, |
---|
1424 | 0.08145001, 0.07753479, 0.08148804, 0.08119069, 0.08247295, 0.08134969, |
---|
1425 | 0.0823216, 0.081411, 0.08190964, 0.08151441, 0.08163076, 0.08166174, |
---|
1426 | 0.03680205, 0.0768216, 0.03943625, 0.07791183, 0.03930529, 0.07760588, |
---|
1427 | 0.03949756, 0.07839929, 0.03992892, 0.08001416, 0.04444335, 0.08628738], |
---|
1428 | atol=1.0e-2) or \ |
---|
1429 | num.allclose(domain.quantities['xmomentum'].centroid_values, |
---|
1430 | [ 0.00178414, 0.00147791, 0.00373636, 0.00169124, 0.00395649, 0.0014468, |
---|
1431 | 0.00387617, 0.00135572, 0.00338418, 0.00134554, 0.00404961, 0.00252769, |
---|
1432 | 0.01365204, 0.00890416, 0.01381613, 0.00986246, 0.01419385, 0.01145017, |
---|
1433 | 0.01465116, 0.01125933, 0.01407359, 0.01055426, 0.01403563, 0.01095544, |
---|
1434 | 0.04653827, 0.03018236, 0.03709973, 0.0265533 , 0.0337694 , 0.02541724, |
---|
1435 | 0.03304266, 0.02535335, 0.03264548, 0.02484769, 0.03047682, 0.02205757, |
---|
1436 | 0.07400338, 0.06470583, 0.07756503, 0.06098108, 0.07942593, 0.06086531, |
---|
1437 | 0.07977427, 0.06074404, 0.07979513, 0.06019911, 0.07806395, 0.06011152, |
---|
1438 | 0.07305045, 0.07883894, 0.08120393, 0.08166623, 0.08180501, 0.08166251, |
---|
1439 | 0.0818353 , 0.08169641, 0.08173762, 0.08174118, 0.08176467, 0.08181817, |
---|
1440 | 0.01549926, 0.08259719, 0.01835423, 0.07302656, 0.01672924, 0.07198839, |
---|
1441 | 0.01676006, 0.07223233, 0.01775672, 0.07362164, 0.01955846, 0.09361223], |
---|
1442 | atol=1.0e-2) |
---|
1443 | |
---|
1444 | |
---|
1445 | assert num.allclose(domain.quantities['ymomentum'].centroid_values, |
---|
1446 | [ -1.09771684e-05, -2.60328801e-05, -1.03481959e-05, -7.75907380e-05, |
---|
1447 | -5.00409090e-05, -7.83807512e-05, -3.60509918e-05, -6.19321031e-05, |
---|
1448 | -1.40041903e-05, -2.95707259e-05, 3.90296618e-06, 1.87556544e-05, |
---|
1449 | 9.27848053e-05, 6.66937557e-07, 1.00653468e-04, 8.24734209e-06, |
---|
1450 | -1.04548672e-05, -4.40402988e-05, -2.95549946e-05, -1.86360736e-05, |
---|
1451 | 1.12527016e-04, 1.27240681e-04, 2.02147284e-04, 9.18457482e-05, |
---|
1452 | 1.41781748e-03, 7.23407624e-04, 5.09160779e-04, 1.29136939e-04, |
---|
1453 | -4.70131286e-05, -1.00180290e-04, -1.76806614e-05, -4.19421384e-06, |
---|
1454 | -6.17759681e-05, -3.02124967e-05, 4.32689360e-04, 5.49717934e-04, |
---|
1455 | 1.15031101e-03, 1.02737170e-03, 5.77937840e-04, 3.36230967e-04, |
---|
1456 | 5.44877516e-04, -7.28594977e-05, 4.60064858e-04, -3.94125434e-05, |
---|
1457 | 7.48242964e-04, 2.88528341e-04, 6.25148041e-05, -1.74477175e-04, |
---|
1458 | -5.06603166e-05, 7.07720999e-04, -2.04937748e-04, 3.38595573e-05, |
---|
1459 | -4.64116229e-05, 1.49325340e-04, -2.41342281e-05, 1.83817970e-04, |
---|
1460 | -1.44417277e-05, 2.47823834e-04, 7.91185571e-05, 1.71615793e-04, |
---|
1461 | 1.56883043e-03, 8.39352974e-04, 3.23353846e-03, 1.70597880e-03, |
---|
1462 | 2.27789107e-03, 1.48928169e-03, 2.09854126e-03, 1.50248643e-03, |
---|
1463 | 2.83029467e-03, 1.09151499e-03, 6.52455118e-03, -2.04468968e-03], |
---|
1464 | atol=1.0e-3) or \ |
---|
1465 | num.allclose(domain.quantities['ymomentum'].centroid_values, |
---|
1466 | [ -1.24810991e-04, -3.08228767e-04, -1.56701128e-04, -1.01904208e-04, |
---|
1467 | -3.36282053e-05, -1.17956840e-04, -3.55986664e-05, -9.38578996e-05, |
---|
1468 | 7.13704069e-05, 2.47022380e-05, 1.71121489e-04, 2.65941677e-04, |
---|
1469 | 6.90055205e-04, 1.99195585e-04, 1.33804448e-04, -1.66563316e-04, |
---|
1470 | -2.00962830e-04, -3.81664130e-05, -9.50456053e-05, -3.14620186e-06, |
---|
1471 | 1.29388102e-04, 3.16945980e-04, 4.77556581e-04, 2.57217342e-04, |
---|
1472 | 1.42300612e-03, 9.60776359e-04, 5.08941026e-04, 1.06939990e-04, |
---|
1473 | 6.37673950e-05, -2.69783047e-04, -8.55760509e-05, -2.12987309e-04, |
---|
1474 | -5.86840949e-06, -9.75751293e-05, 8.25447727e-04, 1.14139065e-03, |
---|
1475 | 8.56206468e-04, 3.83113329e-04, 1.75041847e-04, 4.39999200e-04, |
---|
1476 | 3.75156469e-04, 2.48774698e-04, 4.09671654e-04, 2.07125615e-04, |
---|
1477 | 4.59587647e-04, 2.70581830e-04, -1.24082302e-06, -4.29155678e-04, |
---|
1478 | -9.66841218e-03, 4.93278794e-04, -5.25778806e-06, -4.90396857e-05, |
---|
1479 | -9.75373988e-06, 7.28023591e-06, -5.20499868e-06, 3.61013683e-05, |
---|
1480 | -7.54919544e-06, 4.14115771e-05, -1.35778834e-05, -2.23991903e-05, |
---|
1481 | 3.63635844e-02, 5.29865244e-04, 5.13015379e-03, 1.19233296e-03, |
---|
1482 | 4.70681275e-04, 2.62292296e-04, -1.28084045e-04, 7.04826916e-04, |
---|
1483 | 1.50377987e-04, 1.35053814e-03, 1.30710492e-02, 1.93011958e-03], |
---|
1484 | atol=1.0e-1) |
---|
1485 | |
---|
1486 | |
---|
1487 | |
---|
1488 | os.remove(domain.get_name() + '.sww') |
---|
1489 | |
---|
1490 | |
---|
1491 | def test_temp_play(self): |
---|
1492 | from mesh_factory import rectangular |
---|
1493 | |
---|
1494 | # Create basic mesh |
---|
1495 | points, vertices, boundary = rectangular(5, 5) |
---|
1496 | |
---|
1497 | # Create shallow water domain |
---|
1498 | domain = Domain(points, vertices, boundary) |
---|
1499 | |
---|
1500 | domain.set_store_vertices_uniquely(True) |
---|
1501 | domain.set_default_order(2) |
---|
1502 | |
---|
1503 | |
---|
1504 | |
---|
1505 | # Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
1506 | def x_slope(x, y): |
---|
1507 | return -x/3 |
---|
1508 | |
---|
1509 | domain.set_quantity('elevation', x_slope) |
---|
1510 | |
---|
1511 | # Boundary conditions |
---|
1512 | Br = Reflective_boundary(domain) |
---|
1513 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1514 | |
---|
1515 | # Initial condition |
---|
1516 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
1517 | domain.check_integrity() |
---|
1518 | |
---|
1519 | # Evolution |
---|
1520 | for t in domain.evolve(yieldstep=0.05, finaltime=0.1): |
---|
1521 | pass |
---|
1522 | |
---|
1523 | |
---|
1524 | assert num.allclose(domain.quantities['stage'].centroid_values[:4], |
---|
1525 | [ 0.01, 0.015, 0.01, 0.015], atol=1.0e-2) |
---|
1526 | |
---|
1527 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[:4], |
---|
1528 | [ 0.015, 0.01, 0.015, 0.01], atol=1.0e-2) |
---|
1529 | |
---|
1530 | assert num.allclose(domain.quantities['ymomentum'].centroid_values[:4], |
---|
1531 | [ 0.0, 0.0, 0.0, 0.0] |
---|
1532 | , atol=1.0e-3) |
---|
1533 | |
---|
1534 | os.remove(domain.get_name() + '.sww') |
---|
1535 | |
---|
1536 | def test_complex_bed(self): |
---|
1537 | # No friction is tested here |
---|
1538 | |
---|
1539 | from mesh_factory import rectangular |
---|
1540 | |
---|
1541 | N = 12 |
---|
1542 | points, vertices, boundary = rectangular(N, N/2, len1=1.2, len2=0.6, |
---|
1543 | origin=(-0.07, 0)) |
---|
1544 | |
---|
1545 | |
---|
1546 | domain = Domain(points, vertices, boundary) |
---|
1547 | domain.smooth = False |
---|
1548 | domain.set_default_order(2) |
---|
1549 | domain.set_timestepping_method('rk2') |
---|
1550 | domain.set_beta(1.0) |
---|
1551 | |
---|
1552 | inflow_stage = 0.1 |
---|
1553 | Z = Weir(inflow_stage) |
---|
1554 | domain.set_quantity('elevation', Z) |
---|
1555 | |
---|
1556 | Br = Reflective_boundary(domain) |
---|
1557 | Bd = Dirichlet_boundary([inflow_stage, 0.0, 0.0]) |
---|
1558 | domain.set_boundary({'left': Bd, 'right': Br, 'bottom': Br, 'top': Br}) |
---|
1559 | |
---|
1560 | domain.set_quantity('stage', expression='elevation') |
---|
1561 | |
---|
1562 | for t in domain.evolve(yieldstep=0.02, finaltime=0.2): |
---|
1563 | pass |
---|
1564 | |
---|
1565 | #FIXME: These numbers were from version before 25/10 |
---|
1566 | #assert allclose(domain.quantities['stage'].centroid_values, |
---|
1567 | # [3.95822638e-002, 5.61022588e-002, 4.66437868e-002, 5.73081011e-002, |
---|
1568 | # 4.72394613e-002, 5.74684939e-002, 4.74309483e-002, 5.77458084e-002, |
---|
1569 | # 4.80628177e-002, 5.85656225e-002, 4.90498542e-002, 6.02609831e-002, |
---|
1570 | # 1.18470315e-002, 1.75136443e-002, 1.18035266e-002, 2.15565695e-002, |
---|
1571 | # 1.31620268e-002, 2.14351640e-002, 1.32351076e-002, 2.15450687e-002, |
---|
1572 | # 1.36414028e-002, 2.24274619e-002, 1.51689511e-002, 2.21789655e-002, |
---|
1573 | # -7.54337535e-003, -6.86362021e-004, -7.74146760e-003, -1.83756530e-003, |
---|
1574 | # -8.16773628e-003, -4.49916813e-004, -8.08202599e-003, -3.91118720e-004, |
---|
1575 | # -8.10292716e-003, -3.88584984e-004, -7.35226124e-003, 2.73985295e-004, |
---|
1576 | # 1.86166683e-001, 8.74070369e-002, 1.86166712e-001, 8.74035875e-002, |
---|
1577 | # 6.11666935e-002, -3.76173225e-002, -6.38333276e-002, -3.76147365e-002, |
---|
1578 | # 6.11666725e-002, 8.73846774e-002, 1.86166697e-001, 8.74171550e-002, |
---|
1579 | # -4.83333333e-002, 1.18333333e-001, -4.83333333e-002, 1.18333333e-001, |
---|
1580 | # -4.83333333e-002, -6.66666667e-003, -1.73333333e-001, -1.31666667e-001, |
---|
1581 | # -1.73333333e-001, -6.66666667e-003, -4.83333333e-002, 1.18333333e-001, |
---|
1582 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
1583 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
1584 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
1585 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
1586 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
1587 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
1588 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
1589 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
1590 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
1591 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
1592 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
1593 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
1594 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
1595 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
1596 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
1597 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
1598 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
1599 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
1600 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001, |
---|
1601 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001, |
---|
1602 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001]) |
---|
1603 | |
---|
1604 | os.remove(domain.get_name() + '.sww') |
---|
1605 | |
---|
1606 | |
---|
1607 | def test_tight_slope_limiters(self): |
---|
1608 | """Test that new slope limiters (Feb 2007) don't induce extremely |
---|
1609 | small timesteps. This test actually reveals the problem as it |
---|
1610 | was in March-April 2007 |
---|
1611 | """ |
---|
1612 | import time, os |
---|
1613 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1614 | from data_manager import extent_sww |
---|
1615 | from mesh_factory import rectangular_cross |
---|
1616 | |
---|
1617 | # Create basic mesh |
---|
1618 | points, vertices, boundary = rectangular_cross(2, 2) |
---|
1619 | |
---|
1620 | # Create shallow water domain |
---|
1621 | domain = Domain(points, vertices, boundary) |
---|
1622 | domain.set_default_order(2) |
---|
1623 | domain.set_beta(1.0) |
---|
1624 | domain.set_timestepping_method('euler') |
---|
1625 | #domain.set_CFL(0.5) |
---|
1626 | |
---|
1627 | |
---|
1628 | # This will pass |
---|
1629 | #domain.tight_slope_limiters = 1 |
---|
1630 | #domain.H0 = 0.01 |
---|
1631 | |
---|
1632 | # This will fail |
---|
1633 | #domain.tight_slope_limiters = 1 |
---|
1634 | #domain.H0 = 0.001 |
---|
1635 | |
---|
1636 | # This will pass provided C extension implements limiting of |
---|
1637 | # momentum in _compute_speeds |
---|
1638 | #domain.tight_slope_limiters = 1 |
---|
1639 | #domain.H0 = 0.001 |
---|
1640 | #domain.protect_against_isolated_degenerate_timesteps = True |
---|
1641 | |
---|
1642 | # Set some field values |
---|
1643 | domain.set_quantity('elevation', lambda x,y: -x) |
---|
1644 | domain.set_quantity('friction', 0.03) |
---|
1645 | |
---|
1646 | # Boundary conditions |
---|
1647 | B = Transmissive_boundary(domain) |
---|
1648 | domain.set_boundary({'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
1649 | |
---|
1650 | # Initial condition - with jumps |
---|
1651 | bed = domain.quantities['elevation'].vertex_values |
---|
1652 | stage = num.zeros(bed.shape, num.float) |
---|
1653 | |
---|
1654 | h = 0.3 |
---|
1655 | for i in range(stage.shape[0]): |
---|
1656 | if i % 2 == 1: |
---|
1657 | stage[i,:] = bed[i,:] + h |
---|
1658 | else: |
---|
1659 | stage[i,:] = bed[i,:] |
---|
1660 | |
---|
1661 | domain.set_quantity('stage', stage) |
---|
1662 | |
---|
1663 | domain.distribute_to_vertices_and_edges() |
---|
1664 | |
---|
1665 | domain.set_name('tight_limiters') |
---|
1666 | domain.smooth = True |
---|
1667 | domain.reduction = mean |
---|
1668 | domain.set_datadir('.') |
---|
1669 | domain.smooth = False |
---|
1670 | domain.store = True |
---|
1671 | |
---|
1672 | # Evolution |
---|
1673 | for t in domain.evolve(yieldstep=0.1, finaltime=0.3): |
---|
1674 | #domain.write_time(track_speeds=True) |
---|
1675 | stage = domain.quantities['stage'].vertex_values |
---|
1676 | |
---|
1677 | # Get NetCDF |
---|
1678 | #fid = NetCDFFile(domain.writer.filename, netcdf_mode_r) |
---|
1679 | #stage_file = fid.variables['stage'] |
---|
1680 | |
---|
1681 | #fid.close() |
---|
1682 | |
---|
1683 | os.remove(domain.writer.filename) |
---|
1684 | |
---|
1685 | |
---|
1686 | |
---|
1687 | def test_pmesh2Domain(self): |
---|
1688 | import os |
---|
1689 | import tempfile |
---|
1690 | |
---|
1691 | fileName = tempfile.mktemp(".tsh") |
---|
1692 | file = open(fileName, "w") |
---|
1693 | file.write("4 3 # <vertex #> <x> <y> [attributes]\n \ |
---|
1694 | 0 0.0 0.0 0.0 0.0 0.01 \n \ |
---|
1695 | 1 1.0 0.0 10.0 10.0 0.02 \n \ |
---|
1696 | 2 0.0 1.0 0.0 10.0 0.03 \n \ |
---|
1697 | 3 0.5 0.25 8.0 12.0 0.04 \n \ |
---|
1698 | # Vert att title \n \ |
---|
1699 | elevation \n \ |
---|
1700 | stage \n \ |
---|
1701 | friction \n \ |
---|
1702 | 2 # <triangle #> [<vertex #>] [<neigbouring triangle #>] \n\ |
---|
1703 | 0 0 3 2 -1 -1 1 dsg\n\ |
---|
1704 | 1 0 1 3 -1 0 -1 ole nielsen\n\ |
---|
1705 | 4 # <segment #> <vertex #> <vertex #> [boundary tag] \n\ |
---|
1706 | 0 1 0 2 \n\ |
---|
1707 | 1 0 2 3 \n\ |
---|
1708 | 2 2 3 \n\ |
---|
1709 | 3 3 1 1 \n\ |
---|
1710 | 3 0 # <x> <y> [attributes] ...Mesh Vertices... \n \ |
---|
1711 | 0 216.0 -86.0 \n \ |
---|
1712 | 1 160.0 -167.0 \n \ |
---|
1713 | 2 114.0 -91.0 \n \ |
---|
1714 | 3 # <vertex #> <vertex #> [boundary tag] ...Mesh Segments... \n \ |
---|
1715 | 0 0 1 0 \n \ |
---|
1716 | 1 1 2 0 \n \ |
---|
1717 | 2 2 0 0 \n \ |
---|
1718 | 0 # <x> <y> ...Mesh Holes... \n \ |
---|
1719 | 0 # <x> <y> <attribute>...Mesh Regions... \n \ |
---|
1720 | 0 # <x> <y> <attribute>...Mesh Regions, area... \n\ |
---|
1721 | #Geo reference \n \ |
---|
1722 | 56 \n \ |
---|
1723 | 140 \n \ |
---|
1724 | 120 \n") |
---|
1725 | file.close() |
---|
1726 | |
---|
1727 | tags = {} |
---|
1728 | b1 = Dirichlet_boundary(conserved_quantities = num.array([0.0])) |
---|
1729 | b2 = Dirichlet_boundary(conserved_quantities = num.array([1.0])) |
---|
1730 | b3 = Dirichlet_boundary(conserved_quantities = num.array([2.0])) |
---|
1731 | tags["1"] = b1 |
---|
1732 | tags["2"] = b2 |
---|
1733 | tags["3"] = b3 |
---|
1734 | |
---|
1735 | domain = Domain(mesh_filename=fileName) |
---|
1736 | # verbose=True, use_cache=True) |
---|
1737 | |
---|
1738 | ## check the quantities |
---|
1739 | answer = [[0., 8., 0.], |
---|
1740 | [0., 10., 8.]] |
---|
1741 | assert num.allclose(domain.quantities['elevation'].vertex_values, |
---|
1742 | answer) |
---|
1743 | |
---|
1744 | answer = [[0., 12., 10.], |
---|
1745 | [0., 10., 12.]] |
---|
1746 | assert num.allclose(domain.quantities['stage'].vertex_values, |
---|
1747 | answer) |
---|
1748 | |
---|
1749 | answer = [[0.01, 0.04, 0.03], |
---|
1750 | [0.01, 0.02, 0.04]] |
---|
1751 | assert num.allclose(domain.quantities['friction'].vertex_values, |
---|
1752 | answer) |
---|
1753 | |
---|
1754 | tagged_elements = domain.get_tagged_elements() |
---|
1755 | assert num.allclose(tagged_elements['dsg'][0], 0) |
---|
1756 | assert num.allclose(tagged_elements['ole nielsen'][0], 1) |
---|
1757 | |
---|
1758 | msg = "test_tags_to_boundaries failed. Single boundary wasn't added." |
---|
1759 | self.failUnless( domain.boundary[(1, 0)] == '1', msg) |
---|
1760 | self.failUnless( domain.boundary[(1, 2)] == '2', msg) |
---|
1761 | self.failUnless( domain.boundary[(0, 1)] == '3', msg) |
---|
1762 | self.failUnless( domain.boundary[(0, 0)] == 'exterior', msg) |
---|
1763 | msg = "test_pmesh2Domain Too many boundaries" |
---|
1764 | self.failUnless( len(domain.boundary) == 4, msg) |
---|
1765 | |
---|
1766 | # FIXME change to use get_xllcorner |
---|
1767 | msg = 'Bad geo-reference' |
---|
1768 | self.failUnless(domain.geo_reference.xllcorner == 140.0, msg) |
---|
1769 | |
---|
1770 | domain = Domain(fileName) |
---|
1771 | |
---|
1772 | answer = [[0., 8., 0.], |
---|
1773 | [0., 10., 8.]] |
---|
1774 | assert num.allclose(domain.quantities['elevation'].vertex_values, |
---|
1775 | answer) |
---|
1776 | |
---|
1777 | answer = [[0., 12., 10.], |
---|
1778 | [0., 10., 12.]] |
---|
1779 | assert num.allclose(domain.quantities['stage'].vertex_values, |
---|
1780 | answer) |
---|
1781 | |
---|
1782 | answer = [[0.01, 0.04, 0.03], |
---|
1783 | [0.01, 0.02, 0.04]] |
---|
1784 | assert num.allclose(domain.quantities['friction'].vertex_values, |
---|
1785 | answer) |
---|
1786 | |
---|
1787 | tagged_elements = domain.get_tagged_elements() |
---|
1788 | assert num.allclose(tagged_elements['dsg'][0], 0) |
---|
1789 | assert num.allclose(tagged_elements['ole nielsen'][0], 1) |
---|
1790 | |
---|
1791 | msg = "test_tags_to_boundaries failed. Single boundary wasn't added." |
---|
1792 | self.failUnless(domain.boundary[(1, 0)] == '1', msg) |
---|
1793 | self.failUnless(domain.boundary[(1, 2)] == '2', msg) |
---|
1794 | self.failUnless(domain.boundary[(0, 1)] == '3', msg) |
---|
1795 | self.failUnless(domain.boundary[(0, 0)] == 'exterior', msg) |
---|
1796 | msg = "test_pmesh2Domain Too many boundaries" |
---|
1797 | self.failUnless(len(domain.boundary) == 4, msg) |
---|
1798 | |
---|
1799 | # FIXME change to use get_xllcorner |
---|
1800 | msg = 'Bad geo_reference' |
---|
1801 | self.failUnless(domain.geo_reference.xllcorner == 140.0, msg) |
---|
1802 | |
---|
1803 | os.remove(fileName) |
---|
1804 | |
---|
1805 | def test_get_lone_vertices(self): |
---|
1806 | a = [0.0, 0.0] |
---|
1807 | b = [0.0, 2.0] |
---|
1808 | c = [2.0, 0.0] |
---|
1809 | d = [0.0, 4.0] |
---|
1810 | e = [2.0, 2.0] |
---|
1811 | f = [4.0, 0.0] |
---|
1812 | |
---|
1813 | points = [a, b, c, d, e, f] |
---|
1814 | # bac, bce, ecf, dbe |
---|
1815 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
1816 | boundary = {(0, 0): 'Third', |
---|
1817 | (0, 2): 'First', |
---|
1818 | (2, 0): 'Second', |
---|
1819 | (2, 1): 'Second', |
---|
1820 | (3, 1): 'Second', |
---|
1821 | (3, 2): 'Third'} |
---|
1822 | |
---|
1823 | domain = Domain(points, vertices, boundary) |
---|
1824 | domain.get_lone_vertices() |
---|
1825 | |
---|
1826 | def test_fitting_using_shallow_water_domain(self): |
---|
1827 | #Mesh in zone 56 (absolute coords) |
---|
1828 | |
---|
1829 | x0 = 314036.58727982 |
---|
1830 | y0 = 6224951.2960092 |
---|
1831 | |
---|
1832 | a = [x0+0.0, y0+0.0] |
---|
1833 | b = [x0+0.0, y0+2.0] |
---|
1834 | c = [x0+2.0, y0+0.0] |
---|
1835 | d = [x0+0.0, y0+4.0] |
---|
1836 | e = [x0+2.0, y0+2.0] |
---|
1837 | f = [x0+4.0, y0+0.0] |
---|
1838 | |
---|
1839 | points = [a, b, c, d, e, f] |
---|
1840 | |
---|
1841 | # bac, bce, ecf, dbe |
---|
1842 | elements = [[1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
1843 | |
---|
1844 | # absolute going in .. |
---|
1845 | mesh4 = Domain(points, elements, geo_reference=Geo_reference(56, 0, 0)) |
---|
1846 | mesh4.check_integrity() |
---|
1847 | quantity = Quantity(mesh4) |
---|
1848 | |
---|
1849 | # Get (enough) datapoints (relative to georef) |
---|
1850 | data_points_rel = [[ 0.66666667, 0.66666667], |
---|
1851 | [ 1.33333333, 1.33333333], |
---|
1852 | [ 2.66666667, 0.66666667], |
---|
1853 | [ 0.66666667, 2.66666667], |
---|
1854 | [ 0.0, 1.0], |
---|
1855 | [ 0.0, 3.0], |
---|
1856 | [ 1.0, 0.0], |
---|
1857 | [ 1.0, 1.0], |
---|
1858 | [ 1.0, 2.0], |
---|
1859 | [ 1.0, 3.0], |
---|
1860 | [ 2.0, 1.0], |
---|
1861 | [ 3.0, 0.0], |
---|
1862 | [ 3.0, 1.0]] |
---|
1863 | |
---|
1864 | data_geo_spatial = Geospatial_data(data_points_rel, |
---|
1865 | geo_reference=Geo_reference(56, |
---|
1866 | x0, |
---|
1867 | y0)) |
---|
1868 | data_points_absolute = data_geo_spatial.get_data_points(absolute=True) |
---|
1869 | attributes = linear_function(data_points_absolute) |
---|
1870 | att = 'spam_and_eggs' |
---|
1871 | |
---|
1872 | # Create .txt file |
---|
1873 | ptsfile = tempfile.mktemp(".txt") |
---|
1874 | file = open(ptsfile, "w") |
---|
1875 | file.write(" x,y," + att + " \n") |
---|
1876 | for data_point, attribute in map(None, data_points_absolute, attributes): |
---|
1877 | row = (str(data_point[0]) + ',' + |
---|
1878 | str(data_point[1]) + ',' + |
---|
1879 | str(attribute)) |
---|
1880 | file.write(row + "\n") |
---|
1881 | file.close() |
---|
1882 | |
---|
1883 | # Check that values can be set from file |
---|
1884 | quantity.set_values(filename=ptsfile, attribute_name=att, alpha=0) |
---|
1885 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
1886 | |
---|
1887 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1888 | |
---|
1889 | # Check that values can be set from file using default attribute |
---|
1890 | quantity.set_values(filename = ptsfile, alpha = 0) |
---|
1891 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1892 | |
---|
1893 | # Cleanup |
---|
1894 | import os |
---|
1895 | os.remove(ptsfile) |
---|
1896 | |
---|
1897 | def test_fitting_example_that_crashed(self): |
---|
1898 | """This unit test has been derived from a real world example |
---|
1899 | (the Towradgi '98 rainstorm simulation). |
---|
1900 | |
---|
1901 | It shows a condition where fitting as called from set_quantity crashes |
---|
1902 | when ANUGA mesh is reused. The test passes in the case where a new mesh |
---|
1903 | is created. |
---|
1904 | |
---|
1905 | See ticket:314 |
---|
1906 | """ |
---|
1907 | |
---|
1908 | verbose = False |
---|
1909 | |
---|
1910 | from anuga.shallow_water import Domain |
---|
1911 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
1912 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
1913 | |
---|
1914 | |
---|
1915 | # Get path where this test is run |
---|
1916 | path = get_pathname_from_package('anuga.shallow_water') |
---|
1917 | |
---|
1918 | |
---|
1919 | #---------------------------------------------------------------------- |
---|
1920 | # Create domain |
---|
1921 | #-------------------------------------------------------------------- |
---|
1922 | W = 303400 |
---|
1923 | N = 6195800 |
---|
1924 | E = 308640 |
---|
1925 | S = 6193120 |
---|
1926 | bounding_polygon = [[W, S], [E, S], [E, N], [W, N]] |
---|
1927 | |
---|
1928 | offending_regions = [] |
---|
1929 | |
---|
1930 | # From culvert 8 |
---|
1931 | offending_regions.append([[307611.43896231, 6193631.6894806], |
---|
1932 | [307600.11394969, 6193608.2855474], |
---|
1933 | [307597.41349586, 6193609.59227963], |
---|
1934 | [307608.73850848, 6193632.99621282]]) |
---|
1935 | offending_regions.append([[307633.69143231, 6193620.9216536], |
---|
1936 | [307622.36641969, 6193597.5177204], |
---|
1937 | [307625.06687352, 6193596.21098818], |
---|
1938 | [307636.39188614, 6193619.61492137]]) |
---|
1939 | |
---|
1940 | # From culvert 9 |
---|
1941 | offending_regions.append([[306326.69660524, 6194818.62900522], |
---|
1942 | [306324.67939476, 6194804.37099478], |
---|
1943 | [306323.75856492, 6194804.50127295], |
---|
1944 | [306325.7757754, 6194818.7592834]]) |
---|
1945 | offending_regions.append([[306365.57160524, 6194813.12900522], |
---|
1946 | [306363.55439476, 6194798.87099478], |
---|
1947 | [306364.4752246, 6194798.7407166], |
---|
1948 | [306366.49243508, 6194812.99872705]]) |
---|
1949 | |
---|
1950 | # From culvert 10 |
---|
1951 | offending_regions.append([[306955.071019428608, 6194465.704096679576], |
---|
1952 | [306951.616980571358, 6194457.295903320424], |
---|
1953 | [306950.044491164153, 6194457.941873183474], |
---|
1954 | [306953.498530021403, 6194466.350066542625]]) |
---|
1955 | offending_regions.append([[307002.540019428649, 6194446.204096679576], |
---|
1956 | [306999.085980571399, 6194437.795903320424], |
---|
1957 | [307000.658469978604, 6194437.149933457375], |
---|
1958 | [307004.112508835853, 6194445.558126816526]]) |
---|
1959 | |
---|
1960 | interior_regions = [] |
---|
1961 | for polygon in offending_regions: |
---|
1962 | interior_regions.append( [polygon, 100] ) |
---|
1963 | |
---|
1964 | meshname = os.path.join(path, 'offending_mesh.msh') |
---|
1965 | create_mesh_from_regions(bounding_polygon, |
---|
1966 | boundary_tags={'south': [0], 'east': [1], |
---|
1967 | 'north': [2], 'west': [3]}, |
---|
1968 | maximum_triangle_area=1000000, |
---|
1969 | interior_regions=interior_regions, |
---|
1970 | filename=meshname, |
---|
1971 | use_cache=False, |
---|
1972 | verbose=verbose) |
---|
1973 | |
---|
1974 | domain = Domain(meshname, use_cache=False, verbose=verbose) |
---|
1975 | |
---|
1976 | #---------------------------------------------------------------------- |
---|
1977 | # Fit data point to mesh |
---|
1978 | #---------------------------------------------------------------------- |
---|
1979 | |
---|
1980 | points_file = os.path.join(path, 'offending_point.pts') |
---|
1981 | |
---|
1982 | # Offending point |
---|
1983 | G = Geospatial_data(data_points=[[306953.344, 6194461.5]], |
---|
1984 | attributes=[1]) |
---|
1985 | G.export_points_file(points_file) |
---|
1986 | |
---|
1987 | try: |
---|
1988 | domain.set_quantity('elevation', filename=points_file, |
---|
1989 | use_cache=False, verbose=verbose, alpha=0.01) |
---|
1990 | except RuntimeError, e: |
---|
1991 | msg = 'Test failed: %s' % str(e) |
---|
1992 | raise Exception, msg |
---|
1993 | # clean up in case raise fails |
---|
1994 | os.remove(meshname) |
---|
1995 | os.remove(points_file) |
---|
1996 | else: |
---|
1997 | os.remove(meshname) |
---|
1998 | os.remove(points_file) |
---|
1999 | |
---|
2000 | #finally: |
---|
2001 | # Cleanup regardless |
---|
2002 | #FIXME(Ole): Finally does not work like this in python2.4 |
---|
2003 | #FIXME(Ole): Reinstate this when Python2.4 is out of the way |
---|
2004 | #FIXME(Ole): Python 2.6 apparently introduces something called 'with' |
---|
2005 | #os.remove(meshname) |
---|
2006 | #os.remove(points_file) |
---|
2007 | |
---|
2008 | |
---|
2009 | def test_fitting_example_that_crashed_2(self): |
---|
2010 | """test_fitting_example_that_crashed_2 |
---|
2011 | |
---|
2012 | This unit test has been derived from a real world example |
---|
2013 | (the JJKelly study, by Petar Milevski). |
---|
2014 | |
---|
2015 | It shows a condition where set_quantity crashes due to AtA |
---|
2016 | not being built properly |
---|
2017 | |
---|
2018 | See ticket:314 |
---|
2019 | """ |
---|
2020 | |
---|
2021 | verbose = False |
---|
2022 | |
---|
2023 | from anuga.shallow_water import Domain |
---|
2024 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
2025 | from anuga.geospatial_data import Geospatial_data |
---|
2026 | |
---|
2027 | # Get path where this test is run |
---|
2028 | path = get_pathname_from_package('anuga.shallow_water') |
---|
2029 | |
---|
2030 | meshname = os.path.join(path, 'test_mesh.msh') |
---|
2031 | W = 304180 |
---|
2032 | S = 6185270 |
---|
2033 | E = 307650 |
---|
2034 | N = 6189040 |
---|
2035 | maximum_triangle_area = 1000000 |
---|
2036 | |
---|
2037 | bounding_polygon = [[W, S], [E, S], [E, N], [W, N]] |
---|
2038 | |
---|
2039 | create_mesh_from_regions(bounding_polygon, |
---|
2040 | boundary_tags={'south': [0], |
---|
2041 | 'east': [1], |
---|
2042 | 'north': [2], |
---|
2043 | 'west': [3]}, |
---|
2044 | maximum_triangle_area=maximum_triangle_area, |
---|
2045 | filename=meshname, |
---|
2046 | use_cache=False, |
---|
2047 | verbose=verbose) |
---|
2048 | |
---|
2049 | domain = Domain(meshname, use_cache=True, verbose=verbose) |
---|
2050 | |
---|
2051 | # Large test set revealed one problem |
---|
2052 | points_file = os.path.join(path, 'test_points_large.csv') |
---|
2053 | try: |
---|
2054 | domain.set_quantity('elevation', filename=points_file, |
---|
2055 | use_cache=False, verbose=verbose) |
---|
2056 | except AssertionError, e: |
---|
2057 | msg = 'Test failed: %s' % str(e) |
---|
2058 | raise Exception, msg |
---|
2059 | # Cleanup in case this failed |
---|
2060 | os.remove(meshname) |
---|
2061 | |
---|
2062 | # Small test set revealed another problem |
---|
2063 | points_file = os.path.join(path, 'test_points_small.csv') |
---|
2064 | try: |
---|
2065 | domain.set_quantity('elevation', filename=points_file, |
---|
2066 | use_cache=False, verbose=verbose) |
---|
2067 | except AssertionError, e: |
---|
2068 | msg = 'Test failed: %s' % str(e) |
---|
2069 | raise Exception, msg |
---|
2070 | # Cleanup in case this failed |
---|
2071 | os.remove(meshname) |
---|
2072 | else: |
---|
2073 | os.remove(meshname) |
---|
2074 | |
---|
2075 | |
---|
2076 | |
---|
2077 | |
---|
2078 | def test_variable_elevation(self): |
---|
2079 | """test_variable_elevation |
---|
2080 | |
---|
2081 | This will test that elevagtion van be stored in sww files |
---|
2082 | as a time dependent quantity. |
---|
2083 | |
---|
2084 | It will also chck that storage of other quantities |
---|
2085 | can be controlled this way. |
---|
2086 | """ |
---|
2087 | |
---|
2088 | #--------------------------------------------------------------------- |
---|
2089 | # Import necessary modules |
---|
2090 | #--------------------------------------------------------------------- |
---|
2091 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
2092 | from anuga.shallow_water import Domain |
---|
2093 | from anuga.shallow_water import Reflective_boundary |
---|
2094 | from anuga.shallow_water import Dirichlet_boundary |
---|
2095 | from anuga.shallow_water import Time_boundary |
---|
2096 | |
---|
2097 | #--------------------------------------------------------------------- |
---|
2098 | # Setup computational domain |
---|
2099 | #--------------------------------------------------------------------- |
---|
2100 | length = 8. |
---|
2101 | width = 6. |
---|
2102 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
2103 | |
---|
2104 | inc = 0.05 # Elevation increment |
---|
2105 | |
---|
2106 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
2107 | int(width/dy), |
---|
2108 | len1=length, |
---|
2109 | len2=width) |
---|
2110 | domain = Domain(points, vertices, boundary) |
---|
2111 | domain.set_name('channel_variable_test') # Output name |
---|
2112 | domain.set_quantities_to_be_stored({'elevation': 2, |
---|
2113 | 'stage': 2}) |
---|
2114 | |
---|
2115 | #--------------------------------------------------------------------- |
---|
2116 | # Setup initial conditions |
---|
2117 | #--------------------------------------------------------------------- |
---|
2118 | |
---|
2119 | def pole_increment(x,y): |
---|
2120 | """This provides a small increment to a pole located mid stream |
---|
2121 | For use with variable elevation data |
---|
2122 | """ |
---|
2123 | |
---|
2124 | z = 0.0*x |
---|
2125 | |
---|
2126 | N = len(x) |
---|
2127 | for i in range(N): |
---|
2128 | # Pole |
---|
2129 | if (x[i] - 4)**2 + (y[i] - 2)**2 < 1.0**2: |
---|
2130 | z[i] += inc |
---|
2131 | return z |
---|
2132 | |
---|
2133 | domain.set_quantity('elevation', 0.0) # Flat bed initially |
---|
2134 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
2135 | domain.set_quantity('stage', 0.0) # Dry initial condition |
---|
2136 | |
---|
2137 | #------------------------------------------------------------------ |
---|
2138 | # Setup boundary conditions |
---|
2139 | #------------------------------------------------------------------ |
---|
2140 | Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow |
---|
2141 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
2142 | Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow |
---|
2143 | |
---|
2144 | domain.set_boundary({'left': Bi, 'right': Bo, 'top': Br, 'bottom': Br}) |
---|
2145 | |
---|
2146 | #------------------------------------------------------------------- |
---|
2147 | # Evolve system through time |
---|
2148 | #------------------------------------------------------------------- |
---|
2149 | |
---|
2150 | for t in domain.evolve(yieldstep=1, finaltime=3.0): |
---|
2151 | #print domain.timestepping_statistics() |
---|
2152 | |
---|
2153 | domain.add_quantity('elevation', pole_increment) |
---|
2154 | |
---|
2155 | |
---|
2156 | # Check that quantities have been stored correctly |
---|
2157 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2158 | sww_file = domain.get_name() + '.sww' |
---|
2159 | fid = NetCDFFile(sww_file) |
---|
2160 | |
---|
2161 | x = fid.variables['x'][:] |
---|
2162 | y = fid.variables['y'][:] |
---|
2163 | stage = fid.variables['stage'][:] |
---|
2164 | elevation = fid.variables['elevation'][:] |
---|
2165 | fid.close() |
---|
2166 | |
---|
2167 | os.remove(sww_file) |
---|
2168 | |
---|
2169 | |
---|
2170 | assert len(stage.shape) == 2 |
---|
2171 | assert len(elevation.shape) == 2 |
---|
2172 | |
---|
2173 | M, N = stage.shape |
---|
2174 | |
---|
2175 | for i in range(M): |
---|
2176 | # For each timestep |
---|
2177 | assert num.allclose(max(elevation[i,:]), i * inc) |
---|
2178 | |
---|
2179 | |
---|
2180 | |
---|
2181 | ################################################################################# |
---|
2182 | |
---|
2183 | if __name__ == "__main__": |
---|
2184 | suite = unittest.makeSuite(Test_swb_basic, 'test') |
---|
2185 | runner = unittest.TextTestRunner(verbosity=1) |
---|
2186 | runner.run(suite) |
---|