source: anuga_work/production/australia_ph2/ceduna/run_model.py @ 6342

Last change on this file since 6342 was 6342, checked in by myall, 15 years ago
File size: 5.7 KB
RevLine 
[6291]1"""Run a tsunami inundation scenario for Busselton, WA, Australia.
2
3The scenario is defined by a triangular mesh created from project.polygon, the
4elevation data is compiled into a pts file through build_elevation.py and a
5simulated tsunami is generated through an sts file from build_boundary.py.
6
7Input: sts file (build_boundary.py for respective event)
8       pts file (build_elevation.py)
9       information from project file
10Outputs: sww file stored in project.output_run_time_dir
11The export_results_all.py and get_timeseries.py is reliant
12on the outputs of this script
13
14Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
15Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
16"""
17
18#------------------------------------------------------------------------------
19# Import necessary modules
20#------------------------------------------------------------------------------
21
22# Standard modules
23import os
24import time
25
26# Related major packages
27from anuga.interface import create_domain_from_regions
28from anuga.interface import Dirichlet_boundary
29from anuga.interface import Reflective_boundary
30from anuga.interface import Field_boundary
31from anuga.interface import create_sts_boundary
32from anuga.interface import csv2building_polygons
[6342]33from file_length import file_length
[6291]34
35from anuga.shallow_water.data_manager import start_screen_catcher
36from anuga.shallow_water.data_manager import copy_code_files
37from anuga.utilities.polygon import read_polygon, Polygon_function
38   
39# Application specific imports
40import project  # Definition of file names and polygons
41
42
43#------------------------------------------------------------------------------
44# Copy scripts to time stamped output directory and capture screen
45# output to file. Copy script must be before screen_catcher
46#------------------------------------------------------------------------------
47copy_code_files(project.output_run, __file__, 
48                os.path.dirname(project.__file__)+os.sep+\
49                project.__name__+'.py' )
50start_screen_catcher(project.output_run, 0, 1)
51
52
53#------------------------------------------------------------------------------
54# Create the computational domain based on overall clipping polygon with
55# a tagged boundary and interior regions defined in project.py along with
56# resolutions (maximal area of per triangle) for each polygon
57#------------------------------------------------------------------------------
58print 'Create computational domain'
59
60# Read in boundary from ordered sts file
61event_sts = create_sts_boundary(project.event_sts)
62
63# Reading the landward defined points, this incorporates the original clipping
64# polygon minus the 100m contour
65landward_boundary = read_polygon(project.landward_boundary)
66
67# Combine sts polyline with landward points
68bounding_polygon_sts = event_sts + landward_boundary
69
70# Number of boundary segments
71N = len(event_sts)-1
[6342]72# Number of landward_boundary points
73M = file_length(project.landward_boundary)
[6291]74
75# Boundary tags refer to project.landward_boundary
76# 4 points equals 5 segments start at N
[6342]77boundary_tags={'back': range(N+1,N+M),
78               'side': [N,N+M],
[6291]79               'ocean': range(N)}
80
81# Build mesh and domain
82domain = create_domain_from_regions(bounding_polygon_sts,
83                                    boundary_tags=boundary_tags,
84                                    maximum_triangle_area=project.bounding_maxarea,
85                                    interior_regions=project.interior_regions,
86                                    mesh_filename=project.meshes,
87                                    use_cache=True,
88                                    verbose=True)
89print domain.statistics()
90
91domain.set_name(project.scenario_name)
92domain.set_datadir(project.output_run) 
93domain.set_minimum_storable_height(0.01)    # Don't store depth less than 1cm
94
95
96#------------------------------------------------------------------------------
97# Setup initial conditions
98#------------------------------------------------------------------------------
99print 'Setup initial conditions'
100
101# Set the initial stage in the offcoast region only
102IC = Polygon_function(project.land_initial_conditions,
103                      default=project.tide,
104                      geo_reference=domain.geo_reference)
[6342]105domain.set_quantity('stage', 0, use_cache=True, verbose=True)
[6291]106domain.set_quantity('friction', project.friction) 
107domain.set_quantity('elevation', 
108                    filename=project.combined_elevation+'.pts',
109                    use_cache=True,
110                    verbose=True,
111                    alpha=project.alpha)
112
113
114#------------------------------------------------------------------------------
115# Setup boundary conditions
116#------------------------------------------------------------------------------
117print 'Set boundary - available tags:', domain.get_boundary_tags()
118
119Br = Reflective_boundary(domain)
[6342]120Bd = Dirichlet_boundary([project.tide,0,0])
[6291]121Bf = Field_boundary(project.event_sts+'.sts',
122                    domain, mean_stage=project.tide,
123                    time_thinning=1,
124                    default_boundary=Bd,
125                    boundary_polygon=bounding_polygon_sts,                   
126                    use_cache=True,
127                    verbose=True)
128
[6342]129
[6291]130domain.set_boundary({'back': Br,
[6342]131                     'side': Bd,
[6291]132                     'ocean': Bf}) 
133
134
135#------------------------------------------------------------------------------
136# Evolve system through time
137#------------------------------------------------------------------------------
138t0 = time.time()
139for t in domain.evolve(yieldstep=project.yieldstep, 
140                       finaltime=project.finaltime,
141                       skip_initial_step=False): 
142    print domain.timestepping_statistics()
143    print domain.boundary_statistics(tags='ocean')
144
145print 'Simulation took %.2f seconds' %(time.time()-t0)
Note: See TracBrowser for help on using the repository browser.