source: anuga_work/production/australia_ph2/dampier/run_model.py @ 6971

Last change on this file since 6971 was 6797, checked in by kristy, 16 years ago
File size: 7.5 KB
Line 
1"""Run a tsunami inundation scenario for Busselton, WA, Australia.
2
3The scenario is defined by a triangular mesh created from project.polygon, the
4elevation data is compiled into a pts file through build_elevation.py and a
5simulated tsunami is generated through an sts file from build_boundary.py.
6
7Input: sts file (build_boundary.py for respective event)
8       pts file (build_elevation.py)
9       information from project file
10Outputs: sww file stored in project.output_run_time_dir
11The export_results_all.py and get_timeseries.py is reliant
12on the outputs of this script
13
14Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
15Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
16"""
17
18#------------------------------------------------------------------------------
19# Import necessary modules
20#------------------------------------------------------------------------------
21
22# Standard modules
23import os
24import os.path
25import time
26from time import localtime, strftime, gmtime
27
28# Related major packages
29from Scientific.IO.NetCDF import NetCDFFile
30import Numeric as num
31
32from anuga.interface import create_domain_from_regions
33from anuga.interface import Transmissive_stage_zero_momentum_boundary
34from anuga.interface import Dirichlet_boundary
35from anuga.interface import Reflective_boundary
36from anuga.interface import Field_boundary
37from anuga.interface import Time_boundary
38from anuga.interface import file_function
39
40from anuga.interface import create_sts_boundary
41from anuga.interface import csv2building_polygons
42from file_length import file_length
43
44from anuga.shallow_water.data_manager import start_screen_catcher
45from anuga.shallow_water.data_manager import copy_code_files
46from anuga.shallow_water.data_manager import urs2sts
47from anuga.geospatial_data.geospatial_data import Geospatial_data
48from anuga.utilities.polygon import read_polygon, Polygon_function
49
50# Application specific imports
51from setup_model import project
52import build_urs_boundary as bub
53import prepare_timeboundary as TB
54
55##Used to clip elevation pts file
56##elevation_geospatial = Geospatial_data(file_name=project.combined_elevation+'.pts',
57##                                                    verbose=True)
58##elevation_geospatial = elevation_geospatial.clip(project.bounding_polygon)
59##elevation = project.combined_elevation + '_' + project.model
60##elevation_geospatial.export_points_file(elevation + '.pts')
61
62#-------------------------------------------------------------------------------
63# Copy scripts to time stamped output directory and capture screen
64# output to file. Copy script must be before screen_catcher
65#-------------------------------------------------------------------------------
66
67copy_code_files(project.output_run, __file__, 
68                os.path.join(os.path.dirname(project.__file__),
69                             project.__name__+'.py'))
70start_screen_catcher(project.output_run, 0, 1)
71
72#-------------------------------------------------------------------------------
73# Create the computational domain based on overall clipping polygon with
74# a tagged boundary and interior regions defined in project.py along with
75# resolutions (maximal area of per triangle) for each polygon
76#-------------------------------------------------------------------------------
77
78print 'Create computational domain'
79
80# Create the STS file
81print 'project.mux_data_folder=%s' % project.mux_data_folder
82if not os.path.exists(project.event_sts + '.sts'):
83    bub.build_urs_boundary(project.mux_input_filename, project.event_sts)
84
85# Read in boundary from ordered sts file
86event_sts = create_sts_boundary(project.event_sts)
87
88# Reading the landward defined points, this incorporates the original clipping
89# polygon minus the 100m contour
90landward_boundary = read_polygon(project.landward_boundary)
91
92# Combine sts polyline with landward points
93bounding_polygon_sts = event_sts + landward_boundary
94
95# Number of boundary segments
96num_ocean_segments = len(event_sts) - 1
97# Number of landward_boundary points
98num_land_points = file_length(project.landward_boundary)
99
100# Boundary tags refer to project.landward_boundary
101# 4 points equals 5 segments start at N
102boundary_tags={'back': range(num_ocean_segments+1,
103                             num_ocean_segments+num_land_points),
104               'side': [num_ocean_segments,
105                        num_ocean_segments+num_land_points],
106               'ocean': range(num_ocean_segments)}
107
108# Build mesh and domain
109domain = create_domain_from_regions(bounding_polygon_sts,
110                                    boundary_tags=boundary_tags,
111                                    maximum_triangle_area=project.bounding_maxarea,
112                                    interior_regions=project.interior_regions,
113                                    mesh_filename=project.meshes,
114                                    use_cache=True,
115                                    verbose=True)
116print domain.statistics()
117
118domain.set_name(project.scenario_name)
119domain.set_datadir(project.output_run) 
120domain.set_minimum_storable_height(0.01)    # Don't store depth less than 1cm
121
122#-------------------------------------------------------------------------------
123# Setup initial conditions
124#-------------------------------------------------------------------------------
125
126print 'Setup initial conditions'
127
128# Set the initial stage in the offcoast region only
129if project.land_initial_conditions:
130    IC = Polygon_function(project.land_initial_conditions,
131                          default=project.tide,
132                          geo_reference=domain.geo_reference)
133else:
134    IC = 0
135domain.set_quantity('stage', IC, use_cache=True, verbose=True)
136domain.set_quantity('friction', project.friction) 
137domain.set_quantity('elevation', 
138                    filename = elevation + '.pts',
139                    use_cache=True,
140                    verbose=True,
141                    alpha=project.alpha)
142
143#-------------------------------------------------------------------------------
144# Setup boundary conditions
145#-------------------------------------------------------------------------------
146
147print 'Set boundary - available tags:', domain.get_boundary_tags()
148
149# Prepare time boundary
150TB.prepare_timeboundary(project.boundary_csv)
151f = file_function(project.boundary_csv[:-4] + '.tms')
152
153Br = Reflective_boundary(domain)
154Bt = Transmissive_stage_zero_momentum_boundary(domain)
155Bd = Dirichlet_boundary([project.tide, 0, 0])
156
157if project.wave == 'Bf':
158    Bf = Field_boundary(project.event_sts+'.sts',
159                        domain, mean_stage=project.tide,
160                        time_thinning=1,
161                        default_boundary=Dirichlet_boundary([0, 0, 0]),
162                        boundary_polygon=bounding_polygon_sts,                   
163                        use_cache=True,
164                        verbose=True)
165    domain.set_boundary({'back': Br,
166                     'side': Bt,
167                     'ocean': Bf}) 
168   
169elif project.wave == 'Tb':
170    Tb = Time_boundary(domain,f,default_boundary=Bd )
171
172    domain.set_boundary({'back': Br,
173                         'side': Bt,
174                         'ocean': Tb})
175else:
176    print 'No wave specified in project script (Bf or Tb)'
177   
178
179#-------------------------------------------------------------------------------
180# Evolve system through time
181#-------------------------------------------------------------------------------
182
183t0 = time.time()
184for t in domain.evolve(yieldstep=project.yieldstep, 
185                       finaltime=project.finaltime,
186                       skip_initial_step=False): 
187    print domain.timestepping_statistics()
188    print domain.boundary_statistics(tags='ocean')
189
190print 'Simulation took %.2f seconds' % (time.time()-t0)
Note: See TracBrowser for help on using the repository browser.