source: anuga_work/production/busselton/run_busselton.py @ 7011

Last change on this file since 7011 was 6562, checked in by kristy, 16 years ago

added transverse

File size: 9.8 KB
Line 
1"""Script for running a tsunami inundation scenario for busselton, WA, Australia.
2
3The scenario is defined by a triangular mesh created from project.polygon,
4the elevation data is compiled into a pts file through build_busselton.py
5and a simulated tsunami is generated through an sts file from build_boundary.py.
6
7Input: sts file (build_boundary.py for respective event)
8       pts file (build_busselton.py)
9       information from project file
10Outputs: sww file stored in project.output_run_time_dir
11The export_results_all.py and get_timeseries.py is reliant
12on the outputs of this script
13
14Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
15Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
16"""
17
18#------------------------------------------------------------------------------
19# Import necessary modules
20#------------------------------------------------------------------------------
21
22# Standard modules
23from os import sep
24import os
25from os.path import dirname, basename
26from os import mkdir, access, F_OK
27from shutil import copy
28import time
29import sys
30
31# Related major packages
32from anuga.shallow_water import Domain
33from anuga.shallow_water.shallow_water_domain import Transmissive_stage_zero_momentum_boundary
34from anuga.shallow_water import Dirichlet_boundary
35from anuga.shallow_water import File_boundary
36from anuga.shallow_water import Reflective_boundary
37from anuga.shallow_water import Field_boundary
38from Numeric import allclose
39from anuga.shallow_water.data_manager import export_grid, create_sts_boundary
40from anuga.pmesh.mesh_interface import create_mesh_from_regions
41from anuga.shallow_water.data_manager import start_screen_catcher, copy_code_files,store_parameters
42from anuga_parallel.parallel_abstraction import get_processor_name
43from anuga.caching import myhash
44from anuga.damage_modelling.inundation_damage import add_depth_and_momentum2csv, inundation_damage
45from anuga.fit_interpolate.benchmark_least_squares import mem_usage
46from anuga.utilities.polygon import read_polygon, plot_polygons, polygon_area, is_inside_polygon
47from anuga.geospatial_data.geospatial_data import find_optimal_smoothing_parameter
48from polygon import Polygon_function
49   
50# Application specific imports
51import project  # Definition of file names and polygons
52numprocs = 1
53myid = 0
54
55def run_model(**kwargs):
56   
57    #------------------------------------------------------------------------------
58    # Copy scripts to time stamped output directory and capture screen
59    # output to file
60    #------------------------------------------------------------------------------
61    print "Processor Name:",get_processor_name()
62
63    #copy script must be before screen_catcher
64
65    print 'output_dir',kwargs['output_dir']
66   
67    copy_code_files(kwargs['output_dir'],__file__, 
68             dirname(project.__file__)+sep+ project.__name__+'.py' )
69
70    store_parameters(**kwargs)
71
72    start_screen_catcher(kwargs['output_dir'], myid, numprocs)
73
74    print "Processor Name:",get_processor_name()
75   
76    #-----------------------------------------------------------------------
77    # Domain definitions
78    #-----------------------------------------------------------------------
79
80    # Read in boundary from ordered sts file
81    urs_bounding_polygon=create_sts_boundary(os.path.join(project.boundaries_dir_event,project.scenario_name))
82
83    # Reading the landward defined points, this incorporates the original clipping
84    # polygon minus the 100m contour
85    landward_bounding_polygon = read_polygon(project.landward_dir)
86
87    # Combine sts polyline with landward points
88    bounding_polygon = urs_bounding_polygon + landward_bounding_polygon
89   
90    # counting segments
91    N = len(urs_bounding_polygon)-1
92
93    # boundary tags refer to project.landward 4 points equals 5 segments start at N
94    boundary_tags={'back': [N+1,N+2,N+3,N+4, N+5, N+6, N+7], 'side': [N,N+8], 'ocean': range(N)}
95
96    #--------------------------------------------------------------------------
97    # Create the triangular mesh based on overall clipping polygon with a tagged
98    # boundary and interior regions defined in project.py along with
99    # resolutions (maximal area of per triangle) for each polygon
100    #--------------------------------------------------------------------------
101
102    # IMPORTANT don't cache create_mesh_from_region and Domain(mesh....) as it
103    # causes problems with the ability to cache set quantity which takes alot of times
104       
105    print 'start create mesh from regions'
106
107    create_mesh_from_regions(bounding_polygon,
108                         boundary_tags=boundary_tags,
109                         maximum_triangle_area=project.res_poly_all,
110                         interior_regions=project.interior_regions,
111                         filename=project.meshes_dir_name,
112                         use_cache=False,
113                         verbose=False)
114   
115    #-------------------------------------------------------------------------
116    # Setup computational domain
117    #-------------------------------------------------------------------------
118    print 'Setup computational domain'
119
120    domain = Domain(project.meshes_dir_name, use_cache=False, verbose=True)
121    print 'memory usage before del domain',mem_usage()
122       
123    print domain.statistics()
124    print 'triangles',len(domain)
125   
126    kwargs['act_num_trigs']=len(domain)
127
128
129    #-------------------------------------------------------------------------
130    # Setup initial conditions
131    #-------------------------------------------------------------------------
132    print 'Setup initial conditions'
133
134    # sets the initial stage in the offcoast region only
135    IC = Polygon_function( [(project.poly_mainland, 0),(project.poly_marina, 0)], default = kwargs['tide'],
136                             geo_reference = domain.geo_reference)
137    domain.set_quantity('stage', IC)
138    #domain.set_quantity('stage',kwargs['tide'] )
139    domain.set_quantity('friction', kwargs['friction']) 
140   
141    print 'Start Set quantity',kwargs['elevation_file']
142
143    domain.set_quantity('elevation', 
144                        filename = kwargs['elevation_file'],
145                        use_cache = False,
146                        verbose = True,
147                        alpha = kwargs['alpha'])
148    print 'Finished Set quantity'
149
150##   #------------------------------------------------------
151##    # Distribute domain to implement parallelism !!!
152##    #------------------------------------------------------
153##
154##    if numprocs > 1:
155##        domain=distribute(domain)
156
157    #------------------------------------------------------
158    # Set domain parameters
159    #------------------------------------------------------
160    print 'domain id', id(domain)
161    domain.set_name(kwargs['scenario_name'])
162    domain.set_datadir(kwargs['output_dir'])
163    domain.set_default_order(2)                 # Apply second order scheme
164    domain.set_minimum_storable_height(0.01)    # Don't store anything less than 1cm
165    domain.set_store_vertices_uniquely(False)
166    domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
167    domain.tight_slope_limiters = 1
168    print 'domain id', id(domain)
169
170    #-------------------------------------------------------------------------
171    # Setup boundary conditions
172    #-------------------------------------------------------------------------
173    print 'Available boundary tags', domain.get_boundary_tags()
174    print 'domain id', id(domain)
175   
176    boundary_urs_out=project.boundaries_dir_event + sep + project.scenario_name
177
178    Br = Reflective_boundary(domain)
179    Bt = Transmissive_stage_zero_momentum_boundary(domain)
180    Bd = Dirichlet_boundary([kwargs['tide'],0,0])
181   
182    print 'Available boundary tags', domain.get_boundary_tags()
183    Bf = Field_boundary(boundary_urs_out+'.sts',  # Change from file_boundary
184                   domain, mean_stage= project.tide,
185                   time_thinning=1,
186                   default_boundary=Bd,
187                   use_cache=True,
188                   verbose = True,
189                   boundary_polygon=bounding_polygon)
190
191    domain.set_boundary({'back': Br,
192                         'side': Bt,
193                         'ocean': Bf}) 
194
195    kwargs['input_start_time']=domain.starttime
196
197    print'finish set boundary'
198
199    #----------------------------------------------------------------------------
200    # Evolve system through time
201    #--------------------------------------------------------------------
202    t0 = time.time()
203
204    for t in domain.evolve(yieldstep = project.yieldstep, finaltime = kwargs['finaltime']
205                       ,skip_initial_step = False): 
206        domain.write_time()
207        domain.write_boundary_statistics(tags = 'ocean')
208
209    # these outputs should be checked with the resultant inundation map
210    x, y = domain.get_maximum_inundation_location()
211    q = domain.get_maximum_inundation_elevation()
212    print 'Maximum runup observed at (%.2f, %.2f) with elevation %.2f' %(x,y,q)
213
214    print 'Simulation took %.2f seconds' %(time.time()-t0)
215
216    #kwargs 'completed' must be added to write the final parameters to file
217    kwargs['completed']=str(time.time()-t0)
218     
219    store_parameters(**kwargs)
220     
221    print 'memory usage before del domain1',mem_usage()
222   
223   
224#-------------------------------------------------------------
225if __name__ == "__main__":
226   
227    kwargs={}
228    kwargs['file_name']=project.dir_comment
229    kwargs['finaltime']=project.finaltime
230    kwargs['output_dir']=project.output_run_time_dir
231    kwargs['elevation_file']=project.combined_dir_name+'.pts'
232    kwargs['scenario_name']=project.scenario_name
233    kwargs['tide']=project.tide
234    kwargs['alpha'] = project.alpha
235    kwargs['friction']=project.friction
236    #kwargs['num_cpu']=numprocs
237    #kwargs['host']=project.host
238    #kwargs['starttime']=project.starttime
239    #kwargs['yieldstep']=project.yieldstep
240    #kwargs['user']=project.user
241    #kwargs['time_thinning'] = project.time_thinning
242     
243    run_model(**kwargs)
244     
245   
Note: See TracBrowser for help on using the repository browser.