source: anuga_work/production/busselton/standardised_version/run_busselton.py @ 6255

Last change on this file since 6255 was 6255, checked in by ole, 15 years ago

Started some cleaning up of standardised demo

File size: 9.1 KB
Line 
1"""Script for running a tsunami inundation scenario for busselton, WA, Australia.
2
3The scenario is defined by a triangular mesh created from project.polygon,
4the elevation data is compiled into a pts file through build_busselton.py
5and a simulated tsunami is generated through an sts file from build_boundary.py.
6
7Input: sts file (build_boundary.py for respective event)
8       pts file (build_busselton.py)
9       information from project file
10Outputs: sww file stored in project.output_run_time_dir
11The export_results_all.py and get_timeseries.py is reliant
12on the outputs of this script
13
14Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
15Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
16"""
17
18#------------------------------------------------------------------------------
19# Import necessary modules
20#------------------------------------------------------------------------------
21
22# Standard modules
23from os import sep
24import os
25from os.path import dirname, basename
26from os import mkdir, access, F_OK
27from shutil import copy
28import time
29import sys
30
31# Related major packages
32from anuga.shallow_water import Domain
33from anuga.shallow_water import Dirichlet_boundary
34from anuga.shallow_water import File_boundary
35from anuga.shallow_water import Reflective_boundary
36from anuga.shallow_water import Field_boundary
37from Numeric import allclose
38from anuga.shallow_water.data_manager import export_grid, create_sts_boundary
39from anuga.pmesh.mesh_interface import create_mesh_from_regions
40from anuga.shallow_water.data_manager import start_screen_catcher, copy_code_files,store_parameters
41from anuga_parallel.parallel_abstraction import get_processor_name
42from anuga.caching import myhash
43from anuga.damage_modelling.inundation_damage import add_depth_and_momentum2csv, inundation_damage
44from anuga.fit_interpolate.benchmark_least_squares import mem_usage
45from anuga.utilities.polygon import read_polygon, plot_polygons, polygon_area, is_inside_polygon
46from anuga.geospatial_data.geospatial_data import find_optimal_smoothing_parameter
47from polygon import Polygon_function
48   
49# Application specific imports
50import project  # Definition of file names and polygons
51numprocs = 1
52myid = 0
53
54def run_model(**kwargs):
55   
56    #-----------------------------------------------------------------------
57    # Copy scripts to time stamped output directory and capture screen
58    # output to file
59    #-----------------------------------------------------------------------
60    print "Processor Name:",get_processor_name()
61
62    #copy script must be before screen_catcher
63
64    print 'output_dir',kwargs['output_dir']
65   
66    copy_code_files(kwargs['output_dir'],__file__, 
67             dirname(project.__file__)+sep+ project.__name__+'.py' )
68
69    store_parameters(**kwargs)
70
71    start_screen_catcher(kwargs['output_dir'], myid, numprocs)
72
73    print "Processor Name:",get_processor_name()
74   
75    #-----------------------------------------------------------------------
76    # Domain definitions
77    #-----------------------------------------------------------------------
78
79    # Read in boundary from ordered sts file
80    urs_bounding_polygon=create_sts_boundary(os.path.join(project.boundaries_dir_event, project.scenario_name))
81
82    # Reading the landward defined points, this incorporates the original clipping
83    # polygon minus the 100m contour
84    landward_bounding_polygon = read_polygon(project.landward_dir)
85
86    # Combine sts polyline with landward points
87    bounding_polygon = urs_bounding_polygon + landward_bounding_polygon
88   
89    # counting segments
90    N = len(urs_bounding_polygon)-1
91
92    # boundary tags refer to project.landward 4 points equals 5 segments start at N
93    boundary_tags={'back': [N+1,N+2,N+3,N+4, N+5], 'side': [N,N+6], 'ocean': range(N)}
94
95    #--------------------------------------------------------------------------
96    # Create the triangular mesh based on overall clipping polygon with a tagged
97    # boundary and interior regions defined in project.py along with
98    # resolutions (maximal area of per triangle) for each polygon
99    #--------------------------------------------------------------------------
100
101    # IMPORTANT don't cache create_mesh_from_region and Domain(mesh....) as it
102    # causes problems with the ability to cache set quantity which takes alot of times
103       
104
105    # FIXME(Ole): Introduce create_domain_from_regions: Simpler and caches well
106    print 'start create mesh from regions'
107
108    create_mesh_from_regions(bounding_polygon,
109                         boundary_tags=boundary_tags,
110                         maximum_triangle_area=project.res_poly_all,
111                         interior_regions=project.interior_regions,
112                         filename=project.meshes_dir_name,
113                         use_cache=True,
114                         verbose=True)
115   
116    #-------------------------------------------------------------------------
117    # Setup computational domain
118    #-------------------------------------------------------------------------
119    print 'Setup computational domain'
120
121    domain = Domain(project.meshes_dir_name, use_cache=False, verbose=True)
122    print 'memory usage before del domain',mem_usage()
123       
124    print domain.statistics()
125    print 'triangles',len(domain)
126   
127
128
129    #-------------------------------------------------------------------------
130    # Setup initial conditions
131    #-------------------------------------------------------------------------
132    print 'Setup initial conditions'
133
134    # sets the initial stage in the offcoast region only
135    IC = Polygon_function( [(project.poly_mainland, 0),
136                            (project.poly_marina, 0)], 
137                           default = project.tide,
138                           geo_reference = domain.geo_reference)
139    domain.set_quantity('stage', IC)
140
141    domain.set_quantity('friction', project.friction) 
142   
143    print 'Start Set quantity',kwargs['elevation_file']
144
145    domain.set_quantity('elevation', 
146                        filename = kwargs['elevation_file'],
147                        use_cache = False,
148                        verbose = True,
149                        alpha = project.alpha)
150    print 'Finished Set quantity'
151
152##   #------------------------------------------------------
153##    # Distribute domain to implement parallelism !!!
154##    #------------------------------------------------------
155##
156##    if numprocs > 1:
157##        domain=distribute(domain)
158
159    #------------------------------------------------------
160    # Set domain parameters
161    #------------------------------------------------------
162    print 'domain id', id(domain)
163    domain.set_name(project.scenario_name)
164    domain.set_datadir(kwargs['output_dir'])
165    domain.set_default_order(2)                 # Apply second order scheme
166    domain.set_minimum_storable_height(0.01)    # Don't store anything less than 1cm
167    domain.set_store_vertices_uniquely(False)
168    domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
169    domain.tight_slope_limiters = 1
170    print 'domain id', id(domain)
171
172    #-------------------------------------------------------------------------
173    # Setup boundary conditions
174    #-------------------------------------------------------------------------
175    print 'Available boundary tags', domain.get_boundary_tags()
176    print 'domain id', id(domain)
177   
178    boundary_urs_out=project.boundaries_dir_event + sep + project.scenario_name
179
180    Br = Reflective_boundary(domain)
181    Bd = Dirichlet_boundary(project.tide,0,0])
182   
183    print 'Available boundary tags', domain.get_boundary_tags()
184    Bf = Field_boundary(boundary_urs_out+'.sts',  # Change from file_boundary
185                   domain, mean_stage= project.tide,
186                   time_thinning=1,
187                   default_boundary=Bd,
188                   use_cache=True,
189                   verbose = True,
190                   boundary_polygon=bounding_polygon)
191
192    domain.set_boundary({'back': Br,
193                         'side': Bd,
194                         'ocean': Bf}) 
195
196
197    print'finish set boundary'
198
199    #----------------------------------------------------------------------------
200    # Evolve system through time
201    #--------------------------------------------------------------------
202    t0 = time.time()
203
204    for t in domain.evolve(yieldstep=project.yieldstep, 
205                           finaltime=project.finaltime,
206                           skip_initial_step=False): 
207        domain.write_time()
208        domain.write_boundary_statistics(tags = 'ocean')
209
210    # these outputs should be checked with the resultant inundation map
211    x, y = domain.get_maximum_inundation_location()
212    q = domain.get_maximum_inundation_elevation()
213    print 'Maximum runup observed at (%.2f, %.2f) with elevation %.2f' %(x,y,q)
214
215    print 'Simulation took %.2f seconds' %(time.time()-t0)
216
217
218    kwargs['completed']=str(time.time()-t0)
219     
220    store_parameters(**kwargs)
221
222   
223   
224#-------------------------------------------------------------
225if __name__ == "__main__":
226   
227    kwargs={}
228    kwargs['file_name']=project.dir_comment
229    kwargs['output_dir']=project.output_run_time_dir
230    kwargs['elevation_file']=project.combined_dir_name+'.pts'
231     
232    run_model(**kwargs)
233     
234   
Note: See TracBrowser for help on using the repository browser.