source: anuga_work/production/busselton/standardised_version/run_model.py @ 6512

Last change on this file since 6512 was 6512, checked in by jgriffin, 16 years ago

Fixed default boundary in Field_boundary

File size: 6.5 KB
RevLine 
[6263]1"""Run a tsunami inundation scenario for Busselton, WA, Australia.
[6253]2
[6263]3The scenario is defined by a triangular mesh created from project.polygon, the
[6284]4elevation data is compiled into a pts file through build_elevation.py and a
[6263]5simulated tsunami is generated through an sts file from build_boundary.py.
[6253]6
7Input: sts file (build_boundary.py for respective event)
[6284]8       pts file (build_elevation.py)
[6253]9       information from project file
10Outputs: sww file stored in project.output_run_time_dir
11The export_results_all.py and get_timeseries.py is reliant
12on the outputs of this script
13
14Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
15Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
16"""
17
18#------------------------------------------------------------------------------
19# Import necessary modules
20#------------------------------------------------------------------------------
21
22# Standard modules
23import os
[6343]24import os.path
[6253]25import time
[6343]26from time import localtime, strftime, gmtime
[6253]27
28# Related major packages
[6343]29from Scientific.IO.NetCDF import NetCDFFile
30import Numeric as num
31
[6259]32from anuga.interface import create_domain_from_regions
[6279]33from anuga.interface import Transmissive_stage_zero_momentum_boundary
[6259]34from anuga.interface import Dirichlet_boundary
35from anuga.interface import Reflective_boundary
36from anuga.interface import Field_boundary
37from anuga.interface import create_sts_boundary
38from anuga.interface import csv2building_polygons
[6328]39from file_length import file_length
[6259]40
41from anuga.shallow_water.data_manager import start_screen_catcher
42from anuga.shallow_water.data_manager import copy_code_files
[6343]43from anuga.shallow_water.data_manager import urs2sts
[6259]44from anuga.utilities.polygon import read_polygon, Polygon_function
[6343]45
[6253]46# Application specific imports
[6324]47from setup_model import project
[6369]48import build_urs_boundary as bub
[6253]49
[6343]50#-------------------------------------------------------------------------------
[6259]51# Copy scripts to time stamped output directory and capture screen
[6263]52# output to file. Copy script must be before screen_catcher
[6312]53#-------------------------------------------------------------------------------
54
[6279]55copy_code_files(project.output_run, __file__, 
[6312]56                os.path.join(os.path.dirname(project.__file__),
57                             project.__name__+'.py'))
[6279]58start_screen_catcher(project.output_run, 0, 1)
[6253]59
[6312]60#-------------------------------------------------------------------------------
[6259]61# Create the computational domain based on overall clipping polygon with
62# a tagged boundary and interior regions defined in project.py along with
63# resolutions (maximal area of per triangle) for each polygon
[6312]64#-------------------------------------------------------------------------------
65
[6259]66print 'Create computational domain'
[6253]67
[6312]68# Create the STS file
[6329]69print 'project.mux_data_folder=%s' % project.mux_data_folder
[6369]70if not os.path.exists(project.event_sts + '.sts'):
71    bub.build_urs_boundary(project.mux_input_filename, project.event_sts)
[6312]72
[6259]73# Read in boundary from ordered sts file
[6279]74event_sts = create_sts_boundary(project.event_sts)
[6253]75
[6259]76# Reading the landward defined points, this incorporates the original clipping
77# polygon minus the 100m contour
[6279]78landward_boundary = read_polygon(project.landward_boundary)
[6253]79
[6259]80# Combine sts polyline with landward points
[6279]81bounding_polygon_sts = event_sts + landward_boundary
[6253]82
[6259]83# Number of boundary segments
[6329]84num_ocean_segments = len(event_sts) - 1
[6328]85# Number of landward_boundary points
[6329]86num_land_points = file_length(project.landward_boundary)
[6253]87
[6281]88# Boundary tags refer to project.landward_boundary
89# 4 points equals 5 segments start at N
[6329]90boundary_tags={'back': range(num_ocean_segments+1,
91                             num_ocean_segments+num_land_points),
92               'side': [num_ocean_segments,
93                        num_ocean_segments+num_land_points],
94               'ocean': range(num_ocean_segments)}
[6253]95
[6259]96# Build mesh and domain
[6279]97domain = create_domain_from_regions(bounding_polygon_sts,
[6259]98                                    boundary_tags=boundary_tags,
[6284]99                                    maximum_triangle_area=project.bounding_maxarea,
[6259]100                                    interior_regions=project.interior_regions,
[6279]101                                    mesh_filename=project.meshes,
[6259]102                                    use_cache=True,
103                                    verbose=True)
104print domain.statistics()
[6253]105
[6259]106domain.set_name(project.scenario_name)
[6279]107domain.set_datadir(project.output_run) 
[6259]108domain.set_minimum_storable_height(0.01)    # Don't store depth less than 1cm
[6254]109
[6312]110#-------------------------------------------------------------------------------
111# Setup initial conditions
112#-------------------------------------------------------------------------------
[6263]113
[6259]114print 'Setup initial conditions'
[6253]115
[6259]116# Set the initial stage in the offcoast region only
[6369]117if project.land_initial_conditions:
118    IC = Polygon_function(project.land_initial_conditions,
119                          default=project.tide,
120                          geo_reference=domain.geo_reference)
121else:
122    IC = 0
[6376]123domain.set_quantity('stage', IC, use_cache=True, verbose=True)
[6259]124domain.set_quantity('friction', project.friction) 
125domain.set_quantity('elevation', 
[6279]126                    filename=project.combined_elevation+'.pts',
[6259]127                    use_cache=True,
128                    verbose=True,
[6267]129                    alpha=project.alpha)
[6253]130
[6312]131#-------------------------------------------------------------------------------
132# Setup boundary conditions
133#-------------------------------------------------------------------------------
[6253]134
[6259]135print 'Set boundary - available tags:', domain.get_boundary_tags()
[6253]136
[6259]137Br = Reflective_boundary(domain)
[6279]138Bt = Transmissive_stage_zero_momentum_boundary(domain)
[6369]139Bd = Dirichlet_boundary([project.tide, 0, 0])
[6279]140Bf = Field_boundary(project.event_sts+'.sts',
[6259]141                    domain, mean_stage=project.tide,
142                    time_thinning=1,
[6512]143                    default_boundary=Dirichlet_boundary([0, 0, 0]),
[6279]144                    boundary_polygon=bounding_polygon_sts,                   
[6259]145                    use_cache=True,
146                    verbose=True)
[6253]147
[6259]148domain.set_boundary({'back': Br,
[6369]149                     'side': Bd,
[6259]150                     'ocean': Bf}) 
[6253]151
[6312]152#-------------------------------------------------------------------------------
153# Evolve system through time
154#-------------------------------------------------------------------------------
[6262]155
[6259]156t0 = time.time()
157for t in domain.evolve(yieldstep=project.yieldstep, 
158                       finaltime=project.finaltime,
159                       skip_initial_step=False): 
160    print domain.timestepping_statistics()
161    print domain.boundary_statistics(tags='ocean')
[6253]162
[6312]163print 'Simulation took %.2f seconds' % (time.time()-t0)
Note: See TracBrowser for help on using the repository browser.