1 | """Run a tsunami inundation scenario for Busselton, WA, Australia. |
---|
2 | |
---|
3 | The scenario is defined by a triangular mesh created from project.polygon, the |
---|
4 | elevation data is compiled into a pts file through build_elevation.py and a |
---|
5 | simulated tsunami is generated through an sts file from build_boundary.py. |
---|
6 | |
---|
7 | Input: sts file (build_boundary.py for respective event) |
---|
8 | pts file (build_elevation.py) |
---|
9 | information from project file |
---|
10 | Outputs: sww file stored in project.output_run_time_dir |
---|
11 | The export_results_all.py and get_timeseries.py is reliant |
---|
12 | on the outputs of this script |
---|
13 | |
---|
14 | Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006 |
---|
15 | Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008 |
---|
16 | """ |
---|
17 | |
---|
18 | #------------------------------------------------------------------------------ |
---|
19 | # Import necessary modules |
---|
20 | #------------------------------------------------------------------------------ |
---|
21 | |
---|
22 | # Standard modules |
---|
23 | import os |
---|
24 | import os.path |
---|
25 | import time |
---|
26 | from time import localtime, strftime, gmtime |
---|
27 | |
---|
28 | # Related major packages |
---|
29 | from Scientific.IO.NetCDF import NetCDFFile |
---|
30 | import Numeric as num |
---|
31 | |
---|
32 | from anuga.interface import create_domain_from_regions |
---|
33 | from anuga.interface import Transmissive_stage_zero_momentum_boundary |
---|
34 | from anuga.interface import Dirichlet_boundary |
---|
35 | from anuga.interface import Reflective_boundary |
---|
36 | from anuga.interface import Field_boundary |
---|
37 | from anuga.interface import create_sts_boundary |
---|
38 | from anuga.interface import csv2building_polygons |
---|
39 | <<<<<<< .mine |
---|
40 | ======= |
---|
41 | from file_length import file_length |
---|
42 | |
---|
43 | >>>>>>> .r6341 |
---|
44 | from anuga.shallow_water.data_manager import start_screen_catcher |
---|
45 | from anuga.shallow_water.data_manager import copy_code_files |
---|
46 | from anuga.shallow_water.data_manager import urs2sts |
---|
47 | from anuga.utilities.polygon import read_polygon, Polygon_function |
---|
48 | |
---|
49 | # Application specific imports |
---|
50 | from setup_model import project |
---|
51 | |
---|
52 | |
---|
53 | #------------------------------------------------------------------------------- |
---|
54 | # Get gauges (timeseries of index points) |
---|
55 | #------------------------------------------------------------------------------- |
---|
56 | def get_sts_gauge_data(filename, verbose=False): |
---|
57 | fid = NetCDFFile(filename+'.sts', 'r') #Open existing file for read |
---|
58 | permutation = fid.variables['permutation'][:] |
---|
59 | x = fid.variables['x'][:] + fid.xllcorner #x-coordinates of vertices |
---|
60 | y = fid.variables['y'][:] + fid.yllcorner #y-coordinates of vertices |
---|
61 | points = num.transpose(num.asarray([x.tolist(), y.tolist()])) |
---|
62 | time = fid.variables['time'][:] + fid.starttime |
---|
63 | elevation = fid.variables['elevation'][:] |
---|
64 | |
---|
65 | basename = 'sts_gauge' |
---|
66 | quantity_names = ['stage', 'xmomentum', 'ymomentum'] |
---|
67 | quantities = {} |
---|
68 | for i, name in enumerate(quantity_names): |
---|
69 | quantities[name] = fid.variables[name][:] |
---|
70 | |
---|
71 | #--------------------------------------------------------------------------- |
---|
72 | # Get maximum wave height throughout timeseries at each index point |
---|
73 | #--------------------------------------------------------------------------- |
---|
74 | |
---|
75 | maxname = 'max_sts_stage.csv' |
---|
76 | fid_max = open(os.path.join(project.event_sts, maxname), 'w') |
---|
77 | fid_max.write('index, x, y, max_stage \n') |
---|
78 | for j in range(len(x)): |
---|
79 | index = permutation[j] |
---|
80 | stage = quantities['stage'][:,j] |
---|
81 | xmomentum = quantities['xmomentum'][:,j] |
---|
82 | ymomentum = quantities['ymomentum'][:,j] |
---|
83 | |
---|
84 | fid_max.write('%d, %.6f, %.6f, %.6f\n' % (index, x[j], y[j], max(stage))) |
---|
85 | |
---|
86 | #--------------------------------------------------------------------------- |
---|
87 | # Get minimum wave height throughout timeseries at each index point |
---|
88 | #--------------------------------------------------------------------------- |
---|
89 | |
---|
90 | minname = 'min_sts_stage.csv' |
---|
91 | fid_min = open(os.path.join(project.event_sts, minname), 'w') |
---|
92 | fid_min.write('index, x, y, max_stage \n') |
---|
93 | for j in range(len(x)): |
---|
94 | index = permutation[j] |
---|
95 | stage = quantities['stage'][:,j] |
---|
96 | xmomentum = quantities['xmomentum'][:,j] |
---|
97 | ymomentum = quantities['ymomentum'][:,j] |
---|
98 | |
---|
99 | fid_min.write('%d, %.6f, %.6f, %.6f\n' %(index, x[j], y[j], min(stage))) |
---|
100 | |
---|
101 | out_file = os.path.join(project.event_sts, |
---|
102 | basename+'_'+str(index)+'.csv') |
---|
103 | fid_sts = open(out_file, 'w') |
---|
104 | fid_sts.write('time, stage, xmomentum, ymomentum \n') |
---|
105 | |
---|
106 | #----------------------------------------------------------------------- |
---|
107 | # End of the get gauges |
---|
108 | #----------------------------------------------------------------------- |
---|
109 | for k in range(len(time)-1): |
---|
110 | fid_sts.write('%.6f, %.6f, %.6f, %.6f\n' |
---|
111 | % (time[k], stage[k], xmomentum[k], ymomentum[k])) |
---|
112 | |
---|
113 | fid_sts.close() |
---|
114 | |
---|
115 | fid.close() |
---|
116 | |
---|
117 | return quantities,elevation,time |
---|
118 | |
---|
119 | |
---|
120 | ## |
---|
121 | # @brief Build boundary STS files from one or more MUX files. |
---|
122 | # @param mux_dir Directory containing the MUX files. |
---|
123 | # @param event_file Path to meta-file containing mux files+weight data. |
---|
124 | # @param output_dir Directory to write STS data to. |
---|
125 | # @note 'event_file' is produced by EventSelection. |
---|
126 | def build_urs_boundary(mux_dir, event_file, output_dir): |
---|
127 | '''Build a boundary STS file from a set of MUX files.''' |
---|
128 | |
---|
129 | print 'build_urs_boundary: mux_dir=%s' % mux_dir |
---|
130 | print 'build_urs_boundary: event_file=%s' % event_file |
---|
131 | print 'build_urs_boundary: output_dir=%s' % output_dir |
---|
132 | |
---|
133 | # if we are using an EventSelection multi-mux file |
---|
134 | if project.multi_mux: |
---|
135 | # get the mux+weight data from the event file |
---|
136 | mux_event_file = os.path.join(mux_dir, event_file) |
---|
137 | try: |
---|
138 | fd = open(mux_event_file, 'r') |
---|
139 | mux_data = fd.readlines() |
---|
140 | fd.close() |
---|
141 | except IOError, e: |
---|
142 | msg = 'File %s cannot be read: %s' % (mux_event_file, str(e)) |
---|
143 | raise Exception, msg |
---|
144 | except: |
---|
145 | raise |
---|
146 | |
---|
147 | # first line of file is # filenames+weight in rest of file |
---|
148 | num_lines = int(mux_data[0].strip()) |
---|
149 | mux_data = mux_data[1:] |
---|
150 | print 'number of sources %d' % num_lines |
---|
151 | |
---|
152 | # quick sanity check on input mux meta-file |
---|
153 | if num_lines != len(mux_data): |
---|
154 | msg = ('Bad file %s: %d data lines, but line 1 count is %d' |
---|
155 | % (event_file, len(mux_data), num_lines)) |
---|
156 | raise Exception, msg |
---|
157 | |
---|
158 | # Create filename and weights lists. |
---|
159 | # Must chop GRD filename just after '*.grd'. |
---|
160 | mux_filenames = [] |
---|
161 | for line in mux_data: |
---|
162 | muxname = line.strip().split()[0] |
---|
163 | split_index = muxname.index('.grd') |
---|
164 | muxname = muxname[:split_index+len('.grd')] |
---|
165 | muxname = os.path.join(mux_dir, muxname) |
---|
166 | mux_filenames.append(muxname) |
---|
167 | |
---|
168 | mux_weights = [float(line.strip().split()[1]) for line in mux_data] |
---|
169 | |
---|
170 | # Call legacy function to create STS file. |
---|
171 | # This should be replaced in the future. |
---|
172 | print 'reading', project.urs_order |
---|
173 | print 'creating STS file' |
---|
174 | print 'mux_filenames=%s' % str(mux_filenames) |
---|
175 | print 'basename_out=%s' % str(output_dir) |
---|
176 | print 'ordering_filename=%s' % str(project.urs_order) |
---|
177 | print 'weights=%s' % str(mux_weights) |
---|
178 | print 'mean_stage=%s' % str(project.tide) |
---|
179 | urs2sts(mux_filenames, |
---|
180 | basename_out=output_dir, |
---|
181 | ordering_filename=project.urs_order, |
---|
182 | weights=mux_weights, |
---|
183 | mean_stage=project.tide, |
---|
184 | verbose=True) |
---|
185 | else: # a single mux stem file |
---|
186 | urs_filenames = [os.path.join(mux_dir, event_file)] |
---|
187 | |
---|
188 | weight_factor = 1.0 |
---|
189 | weights = weight_factor*num.ones(len(urs_filenames), num.float) |
---|
190 | |
---|
191 | order_filename = os.path.join(project.order_filename_dir) |
---|
192 | |
---|
193 | print 'reading', order_filename |
---|
194 | # Create ordered sts file |
---|
195 | print 'creating sts file' |
---|
196 | urs2sts(urs_filenames, |
---|
197 | basename_out=os.path.join(project.boundaries_dir, |
---|
198 | project.scenario_name), |
---|
199 | ordering_filename=order_filename, |
---|
200 | weights=weights, |
---|
201 | mean_stage=project.tide, |
---|
202 | verbose=True) |
---|
203 | |
---|
204 | # report on stuff so far |
---|
205 | quantities, elevation, time = get_sts_gauge_data(project.event_folder, |
---|
206 | verbose=False) |
---|
207 | print len(elevation), len(quantities['stage'][0,:]) |
---|
208 | |
---|
209 | #------------------------------------------------------------------------------- |
---|
210 | # Copy scripts to time stamped output directory and capture screen |
---|
211 | # output to file. Copy script must be before screen_catcher |
---|
212 | #------------------------------------------------------------------------------- |
---|
213 | |
---|
214 | copy_code_files(project.output_run, __file__, |
---|
215 | os.path.join(os.path.dirname(project.__file__), |
---|
216 | project.__name__+'.py')) |
---|
217 | start_screen_catcher(project.output_run, 0, 1) |
---|
218 | |
---|
219 | #------------------------------------------------------------------------------- |
---|
220 | # Create the computational domain based on overall clipping polygon with |
---|
221 | # a tagged boundary and interior regions defined in project.py along with |
---|
222 | # resolutions (maximal area of per triangle) for each polygon |
---|
223 | #------------------------------------------------------------------------------- |
---|
224 | |
---|
225 | print 'Create computational domain' |
---|
226 | |
---|
227 | # Create the STS file |
---|
228 | <<<<<<< .mine |
---|
229 | build_urs_boundary(project.mux_data_folder, |
---|
230 | project.mux_input, |
---|
231 | os.path.join(project.event_folder, |
---|
232 | project.scenario_name)) |
---|
233 | ======= |
---|
234 | print 'project.mux_data_folder=%s' % project.mux_data_folder |
---|
235 | bub.build_urs_boundary(project.mux_input_filename, |
---|
236 | os.path.join(project.event_folder, |
---|
237 | project.scenario_name)) |
---|
238 | >>>>>>> .r6341 |
---|
239 | |
---|
240 | # Read in boundary from ordered sts file |
---|
241 | event_sts = create_sts_boundary(project.event_sts) |
---|
242 | |
---|
243 | # Reading the landward defined points, this incorporates the original clipping |
---|
244 | # polygon minus the 100m contour |
---|
245 | landward_boundary = read_polygon(project.landward_boundary) |
---|
246 | |
---|
247 | # Combine sts polyline with landward points |
---|
248 | bounding_polygon_sts = event_sts + landward_boundary |
---|
249 | |
---|
250 | # Number of boundary segments |
---|
251 | num_ocean_segments = len(event_sts) - 1 |
---|
252 | # Number of landward_boundary points |
---|
253 | num_land_points = file_length(project.landward_boundary) |
---|
254 | |
---|
255 | # Boundary tags refer to project.landward_boundary |
---|
256 | # 4 points equals 5 segments start at N |
---|
257 | boundary_tags={'back': range(num_ocean_segments+1, |
---|
258 | num_ocean_segments+num_land_points), |
---|
259 | 'side': [num_ocean_segments, |
---|
260 | num_ocean_segments+num_land_points], |
---|
261 | 'ocean': range(num_ocean_segments)} |
---|
262 | |
---|
263 | # Build mesh and domain |
---|
264 | domain = create_domain_from_regions(bounding_polygon_sts, |
---|
265 | boundary_tags=boundary_tags, |
---|
266 | maximum_triangle_area=project.bounding_maxarea, |
---|
267 | interior_regions=project.interior_regions, |
---|
268 | mesh_filename=project.meshes, |
---|
269 | use_cache=True, |
---|
270 | verbose=True) |
---|
271 | print domain.statistics() |
---|
272 | |
---|
273 | domain.set_name(project.scenario_name) |
---|
274 | domain.set_datadir(project.output_run) |
---|
275 | domain.set_minimum_storable_height(0.01) # Don't store depth less than 1cm |
---|
276 | |
---|
277 | #------------------------------------------------------------------------------- |
---|
278 | # Setup initial conditions |
---|
279 | #------------------------------------------------------------------------------- |
---|
280 | |
---|
281 | print 'Setup initial conditions' |
---|
282 | |
---|
283 | # Set the initial stage in the offcoast region only |
---|
284 | IC = Polygon_function(project.land_initial_conditions, |
---|
285 | default=project.tide, |
---|
286 | geo_reference=domain.geo_reference) |
---|
287 | domain.set_quantity('stage', IC, use_cache=True, verbose=True) |
---|
288 | domain.set_quantity('friction', project.friction) |
---|
289 | domain.set_quantity('elevation', |
---|
290 | filename=project.combined_elevation+'.pts', |
---|
291 | use_cache=True, |
---|
292 | verbose=True, |
---|
293 | alpha=project.alpha) |
---|
294 | |
---|
295 | #------------------------------------------------------------------------------- |
---|
296 | # Setup boundary conditions |
---|
297 | #------------------------------------------------------------------------------- |
---|
298 | |
---|
299 | print 'Set boundary - available tags:', domain.get_boundary_tags() |
---|
300 | |
---|
301 | Br = Reflective_boundary(domain) |
---|
302 | Bt = Transmissive_stage_zero_momentum_boundary(domain) |
---|
303 | Bd = Dirichlet_boundary([kwargs['tide'], 0, 0]) |
---|
304 | Bf = Field_boundary(project.event_sts+'.sts', |
---|
305 | domain, mean_stage=project.tide, |
---|
306 | time_thinning=1, |
---|
307 | default_boundary=Bd, |
---|
308 | boundary_polygon=bounding_polygon_sts, |
---|
309 | use_cache=True, |
---|
310 | verbose=True) |
---|
311 | |
---|
312 | domain.set_boundary({'back': Br, |
---|
313 | 'side': Bt, |
---|
314 | 'ocean': Bf}) |
---|
315 | |
---|
316 | #------------------------------------------------------------------------------- |
---|
317 | # Evolve system through time |
---|
318 | #------------------------------------------------------------------------------- |
---|
319 | |
---|
320 | t0 = time.time() |
---|
321 | for t in domain.evolve(yieldstep=project.yieldstep, |
---|
322 | finaltime=project.finaltime, |
---|
323 | skip_initial_step=False): |
---|
324 | print domain.timestepping_statistics() |
---|
325 | print domain.boundary_statistics(tags='ocean') |
---|
326 | |
---|
327 | print 'Simulation took %.2f seconds' % (time.time()-t0) |
---|