source: anuga_work/production/busselton/standardised_version/run_model.py @ 6368

Last change on this file since 6368 was 6368, checked in by kristy, 14 years ago

took out build_urs_boundary.py from the top of the run script

File size: 10.0 KB
Line 
1"""Run a tsunami inundation scenario for Busselton, WA, Australia.
2
3The scenario is defined by a triangular mesh created from project.polygon, the
4elevation data is compiled into a pts file through build_elevation.py and a
5simulated tsunami is generated through an sts file from build_boundary.py.
6
7Input: sts file (build_boundary.py for respective event)
8       pts file (build_elevation.py)
9       information from project file
10Outputs: sww file stored in project.output_run_time_dir
11The export_results_all.py and get_timeseries.py is reliant
12on the outputs of this script
13
14Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
15Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
16"""
17
18#------------------------------------------------------------------------------
19# Import necessary modules
20#------------------------------------------------------------------------------
21
22# Standard modules
23import os
24import os.path
25import time
26from time import localtime, strftime, gmtime
27
28# Related major packages
29from Scientific.IO.NetCDF import NetCDFFile
30import Numeric as num
31
32from anuga.interface import create_domain_from_regions
33from anuga.interface import Transmissive_stage_zero_momentum_boundary
34from anuga.interface import Dirichlet_boundary
35from anuga.interface import Reflective_boundary
36from anuga.interface import Field_boundary
37from anuga.interface import create_sts_boundary
38from anuga.interface import csv2building_polygons
39from file_length import file_length
40
41from anuga.shallow_water.data_manager import start_screen_catcher
42from anuga.shallow_water.data_manager import copy_code_files
43from anuga.shallow_water.data_manager import urs2sts
44from anuga.utilities.polygon import read_polygon, Polygon_function
45
46# Application specific imports
47from setup_model import project
48
49
50
51##
52# @brief Build boundary STS files from one or more MUX files.
53# @param mux_dir Directory containing the MUX files.
54# @param event_file Path to meta-file containing mux files+weight data.
55# @param output_dir Directory to write STS data to.
56# @note 'event_file' is produced by EventSelection.
57def build_urs_boundary(mux_dir, event_file, output_dir):
58    '''Build a boundary STS file from a set of MUX files.'''
59
60    print 'build_urs_boundary: mux_dir=%s' % mux_dir
61    print 'build_urs_boundary: event_file=%s' % event_file
62    print 'build_urs_boundary: output_dir=%s' % output_dir
63
64    # if we are using an EventSelection multi-mux file
65    if project.multi_mux:   
66        # get the mux+weight data from the event file
67        mux_event_file = os.path.join(mux_dir, event_file)
68        try:
69            fd = open(mux_event_file, 'r')
70            mux_data = fd.readlines()
71            fd.close()
72        except IOError, e:
73            msg = 'File %s cannot be read: %s' % (mux_event_file, str(e))
74            raise Exception, msg
75        except:
76            raise
77
78        # first line of file is # filenames+weight in rest of file
79        num_lines = int(mux_data[0].strip())
80        mux_data = mux_data[1:]
81        print 'number of sources %d' % num_lines
82
83        # quick sanity check on input mux meta-file
84        if num_lines != len(mux_data):
85            msg = ('Bad file %s: %d data lines, but line 1 count is %d'
86                   % (event_file, len(mux_data), num_lines))
87            raise Exception, msg
88
89        # Create filename and weights lists.
90        # Must chop GRD filename just after '*.grd'.
91        mux_filenames = []
92        for line in mux_data:
93            muxname = line.strip().split()[0]
94            split_index = muxname.index('.grd')
95            muxname = muxname[:split_index+len('.grd')]
96            muxname = os.path.join(mux_dir, muxname)
97            mux_filenames.append(muxname)
98       
99        mux_weights = [float(line.strip().split()[1]) for line in mux_data]
100
101        # Call legacy function to create STS file.
102        # This should be replaced in the future.
103        print 'reading', project.urs_order
104        print 'creating STS file'
105        print 'mux_filenames=%s' % str(mux_filenames)
106        print 'basename_out=%s' % str(output_dir)
107        print 'ordering_filename=%s' % str(project.urs_order)
108        print 'weights=%s' % str(mux_weights)
109        print 'mean_stage=%s' % str(project.tide)
110        urs2sts(mux_filenames,
111                basename_out=output_dir,
112                ordering_filename=project.urs_order,
113                weights=mux_weights,
114                mean_stage=project.tide,
115                verbose=True)
116    else:                           # a single mux stem file
117        urs_filenames = [os.path.join(mux_dir, event_file)]
118
119        weight_factor = 1.0
120        weights = weight_factor*num.ones(len(urs_filenames), num.float)
121           
122        order_filename = os.path.join(project.order_filename_dir)
123
124        print 'reading', order_filename
125        # Create ordered sts file
126        print 'creating sts file'
127        urs2sts(urs_filenames,
128                basename_out=os.path.join(project.boundaries_dir,
129                                          project.scenario_name),
130                ordering_filename=order_filename,
131                weights=weights,
132                mean_stage=project.tide,
133                verbose=True)
134
135    # report on stuff so far
136    quantities, elevation, time = get_sts_gauge_data(project.event_folder,
137                                                     verbose=False)
138    print len(elevation), len(quantities['stage'][0,:])
139
140#-------------------------------------------------------------------------------
141# Copy scripts to time stamped output directory and capture screen
142# output to file. Copy script must be before screen_catcher
143#-------------------------------------------------------------------------------
144
145copy_code_files(project.output_run, __file__, 
146                os.path.join(os.path.dirname(project.__file__),
147                             project.__name__+'.py'))
148start_screen_catcher(project.output_run, 0, 1)
149
150#-------------------------------------------------------------------------------
151# Create the computational domain based on overall clipping polygon with
152# a tagged boundary and interior regions defined in project.py along with
153# resolutions (maximal area of per triangle) for each polygon
154#-------------------------------------------------------------------------------
155
156print 'Create computational domain'
157
158# Create the STS file
159print 'project.mux_data_folder=%s' % project.mux_data_folder
160bub.build_urs_boundary(project.mux_input_filename,
161                       os.path.join(project.event_folder,
162                                    project.scenario_name))
163
164# Read in boundary from ordered sts file
165event_sts = create_sts_boundary(project.event_sts)
166
167# Reading the landward defined points, this incorporates the original clipping
168# polygon minus the 100m contour
169landward_boundary = read_polygon(project.landward_boundary)
170
171# Combine sts polyline with landward points
172bounding_polygon_sts = event_sts + landward_boundary
173
174# Number of boundary segments
175num_ocean_segments = len(event_sts) - 1
176# Number of landward_boundary points
177num_land_points = file_length(project.landward_boundary)
178
179# Boundary tags refer to project.landward_boundary
180# 4 points equals 5 segments start at N
181boundary_tags={'back': range(num_ocean_segments+1,
182                             num_ocean_segments+num_land_points),
183               'side': [num_ocean_segments,
184                        num_ocean_segments+num_land_points],
185               'ocean': range(num_ocean_segments)}
186
187# Build mesh and domain
188domain = create_domain_from_regions(bounding_polygon_sts,
189                                    boundary_tags=boundary_tags,
190                                    maximum_triangle_area=project.bounding_maxarea,
191                                    interior_regions=project.interior_regions,
192                                    mesh_filename=project.meshes,
193                                    use_cache=True,
194                                    verbose=True)
195print domain.statistics()
196
197domain.set_name(project.scenario_name)
198domain.set_datadir(project.output_run) 
199domain.set_minimum_storable_height(0.01)    # Don't store depth less than 1cm
200
201#-------------------------------------------------------------------------------
202# Setup initial conditions
203#-------------------------------------------------------------------------------
204
205print 'Setup initial conditions'
206
207# Set the initial stage in the offcoast region only
208IC = Polygon_function(project.land_initial_conditions,
209                      default=project.tide,
210                      geo_reference=domain.geo_reference)
211domain.set_quantity('stage', IC, use_cache=True, verbose=True)
212domain.set_quantity('friction', project.friction) 
213domain.set_quantity('elevation', 
214                    filename=project.combined_elevation+'.pts',
215                    use_cache=True,
216                    verbose=True,
217                    alpha=project.alpha)
218
219#-------------------------------------------------------------------------------
220# Setup boundary conditions
221#-------------------------------------------------------------------------------
222
223print 'Set boundary - available tags:', domain.get_boundary_tags()
224
225Br = Reflective_boundary(domain)
226Bt = Transmissive_stage_zero_momentum_boundary(domain)
227Bd = Dirichlet_boundary([kwargs['tide'], 0, 0])
228Bf = Field_boundary(project.event_sts+'.sts',
229                    domain, mean_stage=project.tide,
230                    time_thinning=1,
231                    default_boundary=Bd,
232                    boundary_polygon=bounding_polygon_sts,                   
233                    use_cache=True,
234                    verbose=True)
235
236domain.set_boundary({'back': Br,
237                     'side': Bt,
238                     'ocean': Bf}) 
239
240#-------------------------------------------------------------------------------
241# Evolve system through time
242#-------------------------------------------------------------------------------
243
244t0 = time.time()
245for t in domain.evolve(yieldstep=project.yieldstep, 
246                       finaltime=project.finaltime,
247                       skip_initial_step=False): 
248    print domain.timestepping_statistics()
249    print domain.boundary_statistics(tags='ocean')
250
251print 'Simulation took %.2f seconds' % (time.time()-t0)
Note: See TracBrowser for help on using the repository browser.