1 | """Script for running tsunami inundation scenario for Dampier, WA, Australia. |
---|
2 | |
---|
3 | Source data such as elevation and boundary data is assumed to be available in |
---|
4 | directories specified by project.py |
---|
5 | The output sww file is stored in project.output_run_time_dir |
---|
6 | |
---|
7 | The scenario is defined by a triangular mesh created from project.polygon, |
---|
8 | the elevation data and a simulated tsunami generated with URS code. |
---|
9 | |
---|
10 | Ole Nielsen and Duncan Gray, GA - 2005 and Jane Sexton, Nick Bartzis, GA - 2006 |
---|
11 | """ |
---|
12 | |
---|
13 | #------------------------------------------------------------------------------ |
---|
14 | # Import necessary modules |
---|
15 | #------------------------------------------------------------------------------ |
---|
16 | |
---|
17 | # Standard modules |
---|
18 | from os import sep |
---|
19 | from os.path import dirname, basename |
---|
20 | from os import mkdir, access, F_OK |
---|
21 | from shutil import copy |
---|
22 | import time |
---|
23 | import sys |
---|
24 | |
---|
25 | # Related major packages |
---|
26 | from anuga.shallow_water import Domain |
---|
27 | from anuga.shallow_water import Dirichlet_boundary |
---|
28 | from anuga.shallow_water import File_boundary |
---|
29 | from anuga.shallow_water import Reflective_boundary |
---|
30 | from anuga.shallow_water import Field_boundary |
---|
31 | from Numeric import allclose |
---|
32 | from anuga.shallow_water.data_manager import export_grid |
---|
33 | |
---|
34 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
35 | from anuga.shallow_water.data_manager import start_screen_catcher, copy_code_files,store_parameters |
---|
36 | from anuga_parallel.parallel_api import distribute, numprocs, myid, barrier |
---|
37 | from anuga_parallel.parallel_abstraction import get_processor_name |
---|
38 | from anuga.caching import myhash |
---|
39 | # Application specific imports |
---|
40 | import project # Definition of file names and polygons |
---|
41 | |
---|
42 | def run_model(**kwargs): |
---|
43 | |
---|
44 | # tide = kwargs['tide'] |
---|
45 | # alpha = kwargs['alpha'] |
---|
46 | # friction = kwargs['friction'] |
---|
47 | # time_thinning = kwargs['time_thinning'] |
---|
48 | scenario_name = kwargs['aa_scenario_name'] |
---|
49 | |
---|
50 | #------------------------------------------------------------------------------ |
---|
51 | # Copy scripts to time stamped output directory and capture screen |
---|
52 | # output to file |
---|
53 | #------------------------------------------------------------------------------ |
---|
54 | |
---|
55 | #copy script must be before screen_catcher |
---|
56 | print 'tide',kwargs['tide'] |
---|
57 | kwargs['est_num_trigs']=project.trigs_min |
---|
58 | kwargs['num_cpu']=numprocs |
---|
59 | kwargs['host']=project.host |
---|
60 | kwargs['res_factor']=project.res_factor |
---|
61 | kwargs['starttime']=project.starttime |
---|
62 | kwargs['yieldstep']=project.yieldstep |
---|
63 | kwargs['finaltime']=project.finaltime |
---|
64 | |
---|
65 | kwargs['output_dir']=project.output_run_time_dir |
---|
66 | kwargs['bathy_file']=project.combined_dir_name+'.txt' |
---|
67 | # kwargs['bathy_file']=project.combined_small_dir_name + '.txt' |
---|
68 | kwargs['boundary_file']=project.boundaries_in_dir_name + '.sww' |
---|
69 | |
---|
70 | print 'output_dir',kwargs['output_dir'] |
---|
71 | if myid == 0: |
---|
72 | copy_code_files(kwargs['output_dir'],__file__, |
---|
73 | dirname(project.__file__)+sep+ project.__name__+'.py' ) |
---|
74 | |
---|
75 | store_parameters(**kwargs) |
---|
76 | |
---|
77 | barrier() |
---|
78 | |
---|
79 | start_screen_catcher(kwargs['output_dir'], myid, numprocs) |
---|
80 | |
---|
81 | print "Processor Name:",get_processor_name() |
---|
82 | |
---|
83 | # filenames |
---|
84 | # meshes_dir_name = project.meshes_dir_name+'.msh' |
---|
85 | |
---|
86 | # creates copy of code in output dir |
---|
87 | print 'min triangles', project.trigs_min, |
---|
88 | print 'Note: This is generally about 20% less than the final amount' |
---|
89 | |
---|
90 | #-------------------------------------------------------------------------- |
---|
91 | # Create the triangular mesh based on overall clipping polygon with a |
---|
92 | # tagged |
---|
93 | # boundary and interior regions defined in project.py along with |
---|
94 | # resolutions (maximal area of per triangle) for each polygon |
---|
95 | #-------------------------------------------------------------------------- |
---|
96 | |
---|
97 | #IMPORTANT don't cache create_mesh_from_region and Domain(mesh....) as it |
---|
98 | # causes problems with the ability to cache set quantity which takes alot of times |
---|
99 | if myid == 0: |
---|
100 | |
---|
101 | print 'start create mesh from regions' |
---|
102 | |
---|
103 | create_mesh_from_regions(project.poly_all, |
---|
104 | boundary_tags={'back': [3,4,5], 'side': [2,6], |
---|
105 | 'ocean': [0,1,7]}, |
---|
106 | maximum_triangle_area=project.res_poly_all, |
---|
107 | interior_regions=project.interior_regions, |
---|
108 | filename=project.meshes_dir_name+'.msh', |
---|
109 | use_cache=False, |
---|
110 | verbose=True) |
---|
111 | barrier() |
---|
112 | |
---|
113 | #------------------------------------------------------------------------- |
---|
114 | # Setup computational domain |
---|
115 | #------------------------------------------------------------------------- |
---|
116 | print 'Setup computational domain' |
---|
117 | |
---|
118 | #domain = cache(Domain, (meshes_dir_name), {'use_cache':True, 'verbose':True}, verbose=True) |
---|
119 | #above don't work |
---|
120 | domain = Domain(project.meshes_dir_name+'.msh', use_cache=False, verbose=True) |
---|
121 | |
---|
122 | print domain.statistics() |
---|
123 | print 'triangles',len(domain) |
---|
124 | |
---|
125 | kwargs['act_num_trigs']=len(domain) |
---|
126 | |
---|
127 | #------------------------------------------------------------------------- |
---|
128 | # Setup initial conditions |
---|
129 | #------------------------------------------------------------------------- |
---|
130 | if myid == 0: |
---|
131 | |
---|
132 | print 'Setup initial conditions' |
---|
133 | |
---|
134 | from polygon import Polygon_function |
---|
135 | #following sets the stage/water to be offcoast only |
---|
136 | IC = Polygon_function( [(project.poly_mainland, -1.0)], default = kwargs['tide'], |
---|
137 | geo_reference = domain.geo_reference) |
---|
138 | domain.set_quantity('stage', IC) |
---|
139 | domain.set_quantity('friction', kwargs['friction']) |
---|
140 | |
---|
141 | print 'Start Set quantity' |
---|
142 | |
---|
143 | domain.set_quantity('elevation', |
---|
144 | filename = kwargs['bathy_file'], |
---|
145 | use_cache = True, |
---|
146 | verbose = True, |
---|
147 | alpha = kwargs['alpha']) |
---|
148 | print 'Finished Set quantity' |
---|
149 | barrier() |
---|
150 | |
---|
151 | #------------------------------------------------------ |
---|
152 | # Distribute domain to implement parallelism !!! |
---|
153 | #------------------------------------------------------ |
---|
154 | |
---|
155 | if numprocs > 1: |
---|
156 | domain=distribute(domain) |
---|
157 | |
---|
158 | #------------------------------------------------------ |
---|
159 | # Set domain parameters |
---|
160 | #------------------------------------------------------ |
---|
161 | print 'domain id', id(domain) |
---|
162 | domain.set_name(kwargs['aa_scenario_name']) |
---|
163 | domain.set_datadir(kwargs['output_dir']) |
---|
164 | domain.set_default_order(2) # Apply second order scheme |
---|
165 | domain.set_minimum_storable_height(0.01) # Don't store anything less than 1cm |
---|
166 | domain.set_store_vertices_uniquely(False) |
---|
167 | domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) |
---|
168 | domain.set_maximum_allowed_speed(0.1) # Allow a little runoff (0.1 is OK) |
---|
169 | print 'domain id', id(domain) |
---|
170 | domain.beta_h = 0 |
---|
171 | #domain.limit2007 = 1 |
---|
172 | |
---|
173 | #------------------------------------------------------------------------- |
---|
174 | # Setup boundary conditions |
---|
175 | #------------------------------------------------------------------------- |
---|
176 | print 'Available boundary tags', domain.get_boundary_tags() |
---|
177 | print 'domain id', id(domain) |
---|
178 | #print 'Reading Boundary file',project.boundaries_dir_namea + '.sww' |
---|
179 | |
---|
180 | Bf = Field_boundary(kwargs['boundary_file'], |
---|
181 | domain, time_thinning=kwargs['time_thinning'], mean_stage=kwargs['tide'], |
---|
182 | use_cache=True, verbose=True) |
---|
183 | |
---|
184 | kwargs['input_start_time']=domain.starttime |
---|
185 | |
---|
186 | print 'finished reading boundary file' |
---|
187 | |
---|
188 | Br = Reflective_boundary(domain) |
---|
189 | Bd = Dirichlet_boundary([kwargs['tide'],0,0]) |
---|
190 | |
---|
191 | print'set_boundary' |
---|
192 | |
---|
193 | domain.set_boundary({'back': Br, |
---|
194 | 'side': Bd, |
---|
195 | 'ocean': Bf}) |
---|
196 | print'finish set boundary' |
---|
197 | |
---|
198 | #---------------------------------------------------------------------------- |
---|
199 | # Evolve system through time |
---|
200 | #---------------------------------------------------------------------------- |
---|
201 | |
---|
202 | t0 = time.time() |
---|
203 | |
---|
204 | for t in domain.evolve(yieldstep = 240, finaltime = kwargs['starttime']): |
---|
205 | domain.write_time() |
---|
206 | domain.write_boundary_statistics(tags = 'ocean') |
---|
207 | |
---|
208 | for t in domain.evolve(yieldstep = kwargs['yieldstep'], finaltime = 21600 |
---|
209 | ,skip_initial_step = True): |
---|
210 | domain.write_time() |
---|
211 | domain.write_boundary_statistics(tags = 'ocean') |
---|
212 | |
---|
213 | for t in domain.evolve(yieldstep = 240, finaltime = kwargs['finaltime'] |
---|
214 | ,skip_initial_step = True): |
---|
215 | domain.write_time() |
---|
216 | domain.write_boundary_statistics(tags = 'ocean') |
---|
217 | |
---|
218 | x, y = domain.get_maximum_inundation_location() |
---|
219 | q = domain.get_maximum_inundation_elevation() |
---|
220 | |
---|
221 | print 'Maximum runup observed at (%.2f, %.2f) with elevation %.2f' %(x,y,q) |
---|
222 | |
---|
223 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
224 | |
---|
225 | #kwargs 'completed' must be added to write the final parameters to file |
---|
226 | kwargs['completed']=str(time.time()-t0) |
---|
227 | if myid == 0: |
---|
228 | store_parameters(**kwargs) |
---|
229 | barrier() |
---|
230 | |
---|
231 | export_grid(kwargs['aa_scenario_name'], extra_name_out = 'town', |
---|
232 | quantities = ['elevation','stage'], # '(xmomentum**2 + ymomentum**2)**0.5' defaults to elevation |
---|
233 | timestep = None, |
---|
234 | reduction = max, |
---|
235 | cellsize = 25, |
---|
236 | NODATA_value = -9999, |
---|
237 | easting_min = project.eastingmin, |
---|
238 | easting_max = project.eastingmax, |
---|
239 | northing_min = project.northingmin, |
---|
240 | northing_max = project.northingmax, |
---|
241 | verbose = False, |
---|
242 | origin = None, |
---|
243 | datum = 'WGS84', |
---|
244 | format = 'asc') |
---|
245 | |
---|
246 | swwfile = kwargs['output_dir']+kwargs['aa_scenario_name']+'.sww' |
---|
247 | buildings_filename = project.buildings_filename |
---|
248 | buildings_filename_out = project.buildings_filename_out |
---|
249 | |
---|
250 | inundation_damage(swwfile, buildings_filename, buildings_filename_out) |
---|
251 | print '\n Augmented building file written to %s \n' \ |
---|
252 | %buildings_filename_out |
---|
253 | |
---|
254 | |
---|
255 | #------------------------------------------------------------- |
---|
256 | if __name__ == "__main__": |
---|
257 | |
---|
258 | run_model(file_name=project.home+'detail.csv', aa_scenario_name=project.scenario_name, |
---|
259 | ab_time=project.time, res_factor= project.res_factor, tide=project.tide, user=project.user, |
---|
260 | alpha = project.alpha, friction=project.friction, |
---|
261 | time_thinning = project.time_thinning, |
---|
262 | dir_comment=project.dir_comment) |
---|
263 | |
---|
264 | |
---|