"""Common filenames and locations for elevation, meshes and outputs. This script is the heart of all scripts in the folder """ #------------------------------------------------------------------------------ # Import necessary modules #------------------------------------------------------------------------------ from os import sep, environ, getenv, getcwd from os.path import expanduser import sys from time import localtime, strftime, gmtime from anuga.utilities.polygon import read_polygon, plot_polygons, is_inside_polygon, number_mesh_triangles from anuga.utilities.system_tools import get_user_name, get_host_name from anuga.shallow_water.data_manager import urs2sts,create_sts_boundary from anuga.utilities.polygon import read_polygon, plot_polygons, polygon_area, is_inside_polygon #------------------------------------------------------------------------------ # Directory setup #------------------------------------------------------------------------------ # Note: INUNDATIONHOME is the inundation directory, not the data directory. home = getenv('INUNDATIONHOME') + sep +'data'+sep #Sandpit's parent diruser = get_user_name() muxhome = getenv('MUXHOME') user = get_user_name() host = get_host_name() # determines time for setting up output directories time = strftime('%Y%m%d_%H%M%S',localtime()) gtime = strftime('%Y%m%d_%H%M%S',gmtime()) build_time = time+'_build' run_time = time+'_run' #------------------------------------------------------------------------------ # Initial Conditions #------------------------------------------------------------------------------ # this section needs to be updated to reflect the modelled community. # Note, the user needs to set up the directory system accordingly state = 'western_australia' scenario_name = 'geraldton' scenario = 'geraldton_tsunami_scenario' # Model specific parameters. One or all can be changed each time the # run_scenario script is executed tide = 0.6 #0.6 #event_number = 27255 # Java 9.3 worst case for Perth event_number = 68693 # Sumatra 9.2 #event_number = 27283 # Java 9.3 original alpha = 0.1 # smoothing parameter for mesh friction=0.01 # manning's friction coefficient starttime=0 finaltime=80000 # final time for simulation setup='final' # Final can be replaced with trial or basic. # Either will result in a coarser mesh that will allow a # faster, but less accurate, simulation. if setup =='coarse': print'coarse' res_factor=10000000 time_thinning=48 yieldstep=240 if setup =='trial': print'trial' res_factor=10 time_thinning=48 yieldstep=240 if setup =='basic': print'basic' res_factor=4 time_thinning=12 yieldstep=120 if setup =='final': print'final' res_factor=1 time_thinning=4 yieldstep=60 #------------------------------------------------------------------------------ # Output Filename #------------------------------------------------------------------------------ # Important to distinguish each run - ensure str(user) is included! # Note, the user is free to include as many parameters as desired dir_comment='_'+setup+'_'+str(tide)+'_'+str(event_number)+'_'+ 'alpha' +str(alpha)+'_'+str(user) #------------------------------------------------------------------------------ # Input Data #------------------------------------------------------------------------------ # elevation data used in build_geraldton.py # onshore data: format ascii grid with accompanying projection file onshore_name = 'landgate_dem_clip' # island: format ascii grid with accompanying projection file island_name = 'dted_srtm_islands' # coastline: format x,y,elevation (with title) coast_name = 'XYcoastline_KVP.txt' # bathymetry: format x,y,elevation (with title) offshore_name = 'Geraldton_bathymetry.txt' offshore_name1 = 'DPI_Data.txt' offshore_name2 = 'grid250.txt' offshore_name3 = 'Top_bathymetry.txt' # gauges - used in get_timeseries.py gauge_name = 'MH_gauges.csv' #'geraldton.csv' gauge_name2 = 'thinned_MGA50.csv' #buildings - used in run_building_inundation.py building = 'geraldton_res_clip' # barrier barrier = 'CBD.csv' barrier1 = 'wall.csv' # BOUNDING POLYGON - used in build_boundary.py and run_geraldton.py respectively # NOTE: when files are put together the points must be in sequence - for ease go clockwise! # Check the run_geraldton.py for boundary_tags # thinned ordering file from Hazard Map: format is index,latitude,longitude (with title) order_filename = 'thinned_boundary_ordering.csv' #landward bounding points landward = 'landward_bounding_polygon.csv' #------------------------------------------------------------------------------ # Output Elevation Data #------------------------------------------------------------------------------ # Output filename for elevation # this is a combination of all the data (utilisied in build_boundary) combined_name ='geraldton_combined_elevation' combined_smaller_name = 'geraldton_combined_elevation_smaller' #------------------------------------------------------------------------------ # Directory Structure #------------------------------------------------------------------------------ anuga_dir = home+state+sep+scenario+sep+'anuga'+sep topographies_in_dir = home+state+sep+scenario+sep+'elevation_final'+sep+'points'+sep topographies_dir = anuga_dir+'topographies'+sep polygons_dir = anuga_dir+'polygons'+sep tide_dir = anuga_dir+'tide_data'+sep boundaries_dir = anuga_dir+'boundaries'+ sep output_dir = anuga_dir+'outputs'+sep gauges_dir = anuga_dir+'gauges'+sep meshes_dir = anuga_dir+'meshes'+sep #------------------------------------------------------------------------------ # Location of input and output data #------------------------------------------------------------------------------ # where the input data sits onshore_in_dir_name = topographies_in_dir + onshore_name island_in_dir_name = topographies_in_dir + island_name coast_in_dir_name = topographies_in_dir + coast_name offshore_in_dir_name = topographies_in_dir + offshore_name offshore_in_dir_name1 = topographies_in_dir + offshore_name1 offshore_in_dir_name2 = topographies_in_dir + offshore_name2 offshore_in_dir_name3 = topographies_in_dir + offshore_name3 # where the output data sits onshore_dir_name = topographies_dir + onshore_name island_dir_name = topographies_dir + island_name coast_dir_name = topographies_dir + coast_name offshore_dir_name = topographies_dir + offshore_name offshore_dir_name1 = topographies_dir + offshore_name1 offshore_dir_name2 = topographies_dir + offshore_name2 offshore_dir_name3 = topographies_dir + offshore_name3 # where the combined elevation file sits combined_dir_name = topographies_dir + combined_name combined_smaller_name_dir = topographies_dir + combined_smaller_name # where the mesh sits (this is created during the run_geraldton.py) meshes_dir_name = meshes_dir + scenario_name+'.msh' barrier_dir_name = meshes_dir + barrier barrier_dir_name1 = meshes_dir + barrier1 # where the boundary ordering files sit (this is used within build_boundary.py) order_filename_dir = boundaries_dir + order_filename # where the landward points of boundary extent sit (this is used within run_geraldton.py) landward_dir = boundaries_dir + landward # where the event sts files sits (this is created during the build_boundary.py) boundaries_dir_event = boundaries_dir + str(event_number) + sep boundaries_dir_mux = muxhome # where the directory of the output filename sits output_build_time_dir = output_dir+build_time+dir_comment+sep #used for build_geraldton.py output_run_time_dir = output_dir+run_time+dir_comment+sep #used for run_geraldton.py output_run_time_dir_name = output_run_time_dir + scenario_name #Used by post processing # where the directory of the gauges sit gauges_dir_name = gauges_dir + gauge_name #used for get_timeseries.py gauges_dir_name2 = gauges_dir + gauge_name2 #used for get_timeseries.py building_in_dir_name = gauges_dir + building + '.csv' #used for run_building_inundation.py #------------------------------------------------------------------------------ # Interior region definitions #------------------------------------------------------------------------------ #Land, to set the initial stage/water to be offcoast only #Land and Ocean to clip data poly_mainland=read_polygon(polygons_dir +'land_initial_condition.csv') poly_ocean=read_polygon(polygons_dir +'ocean_initial_condition.csv') poly_buffer_20m=read_polygon(polygons_dir +'buffer_20m.csv') # Initial bounding polygon for data clipping poly_all = read_polygon(polygons_dir+'poly_all.csv') res_poly_all = 100000*res_factor # Area of Interest 1 (Geraldton) poly_aoi1 = read_polygon(polygons_dir+'CBD_500m.csv') res_aoi1 = 500*res_factor # Area of Significance 1 (Geraldton) poly_aos1 = read_polygon(polygons_dir+'CBD_1km.csv') res_aos1 = 800*res_factor # Area of Significance 2 (island1) poly_aos2 = read_polygon(polygons_dir+'island_wallabi_poly.csv') res_aos2 = 5000*res_factor # Area of Significance 3 (island2) poly_aos3 = read_polygon(polygons_dir+'island_dingiville_poly.csv') res_aos3 = 5000*res_factor # Area of Significance 4 (island3) poly_aos4 = read_polygon(polygons_dir+'island_pelsaert_poly.csv') res_aos4 = 5000*res_factor # Shallow water 1 poly_sw1 = read_polygon(polygons_dir+'neg20_pos20.csv') res_sw1 = 25000*res_factor # Combined all regions, must check that all are included! interior_regions = [[poly_aoi1,res_aoi1],[poly_aos1,res_aos1] ,[poly_aos2,res_aos2],[poly_aos3,res_aos3] ,[poly_aos4,res_aos4],[poly_sw1,res_sw1]] trigs_min = number_mesh_triangles(interior_regions, poly_all, res_poly_all) print 'min estimated number of triangles', trigs_min #------------------------------------------------------------------------------ # Clipping regions for export to asc and regions for clipping data # Final inundation maps should only be created in regions of the finest mesh #------------------------------------------------------------------------------ # Geraldton CBD extract ascii grid xminCBD = 262700 xmaxCBD = 267600 yminCBD = 6811500 ymaxCBD = 6816400