source: anuga_work/production/geraldton/run_geraldton.py @ 5751

Last change on this file since 5751 was 5751, checked in by kristy, 17 years ago
File size: 10.9 KB
Line 
1"""Script for running tsunami inundation scenario for Dampier, WA, Australia.
2
3Source data such as elevation and boundary data is assumed to be available in
4directories specified by project.py
5The output sww file is stored in project.output_run_time_dir
6
7The scenario is defined by a triangular mesh created from project.polygon,
8the elevation data and a simulated tsunami generated with URS code.
9
10Ole Nielsen and Duncan Gray, GA - 2005 and Jane Sexton, Nick Bartzis, GA - 2006
11"""
12
13#------------------------------------------------------------------------------
14# Import necessary modules
15#------------------------------------------------------------------------------
16
17# Standard modules
18from os import sep
19import os
20from os.path import dirname, basename
21from os import mkdir, access, F_OK
22from shutil import copy
23import time
24import sys
25
26# Related major packages
27from anuga.shallow_water import Domain
28from anuga.shallow_water import Dirichlet_boundary
29from anuga.shallow_water import File_boundary
30from anuga.shallow_water import Reflective_boundary
31from anuga.shallow_water import Field_boundary
32from Numeric import allclose
33from anuga.shallow_water.data_manager import export_grid, create_sts_boundary
34
35from anuga.pmesh.mesh_interface import create_mesh_from_regions
36from anuga.shallow_water.data_manager import start_screen_catcher, copy_code_files,store_parameters
37#from anuga_parallel.parallel_api import distribute, numprocs, myid, barrier
38from anuga_parallel.parallel_abstraction import get_processor_name
39from anuga.caching import myhash
40from anuga.damage_modelling.inundation_damage import add_depth_and_momentum2csv, inundation_damage
41from anuga.fit_interpolate.benchmark_least_squares import mem_usage
42from anuga.utilities.polygon import read_polygon, plot_polygons, polygon_area, is_inside_polygon
43from anuga.geospatial_data.geospatial_data import find_optimal_smoothing_parameter
44from Scientific.IO.NetCDF import NetCDFFile
45
46# Application specific imports
47import project                 # Definition of file names and polygons
48numprocs = 1
49myid = 0
50
51def run_model(**kwargs):
52   
53
54    #------------------------------------------------------------------------------
55    # Copy scripts to time stamped output directory and capture screen
56    # output to file
57    #------------------------------------------------------------------------------
58    print "Processor Name:",get_processor_name()
59
60    #copy script must be before screen_catcher
61    #print kwargs
62
63    print 'output_dir',kwargs['output_dir']
64    if myid == 0:
65        copy_code_files(kwargs['output_dir'],__file__, 
66                 dirname(project.__file__)+sep+ project.__name__+'.py' )
67
68        store_parameters(**kwargs)
69
70   # barrier()
71
72    start_screen_catcher(kwargs['output_dir'], myid, numprocs)
73
74    print "Processor Name:",get_processor_name()
75
76   
77    #-----------------------------------------------------------------------
78    # Domain definitions
79    #-----------------------------------------------------------------------
80
81    # Read in boundary from ordered sts file
82    urs_bounding_polygon=create_sts_boundary(os.path.join(project.boundaries_dir,project.scenario_name))
83
84    # Reading the landward defined points, this incorporates the original clipping
85    # polygon minus the 100m contour
86    landward_bounding_polygon = read_polygon(project.boundaries_dir+'landward_boundary_polygon.txt')
87
88    # Combine sts polyline with landward points
89    bounding_polygon = urs_bounding_polygon + landward_bounding_polygon
90   
91    # counting segments
92    N = len(urs_bounding_polygon)-1
93    boundary_tags={'back': [N+2,N+3], 'side': [N,N+1,N+4],'ocean': range(N)}
94
95    print 'boundary tags',boundary_tags
96       
97    #--------------------------------------------------------------------------
98    # Create the triangular mesh based on overall clipping polygon with a
99    # tagged
100    # boundary and interior regions defined in project.py along with
101    # resolutions (maximal area of per triangle) for each polygon
102    #--------------------------------------------------------------------------
103
104    #IMPORTANT don't cache create_mesh_from_region and Domain(mesh....) as it
105    # causes problems with the ability to cache set quantity which takes alot of times
106    if myid == 0:
107   
108        print 'start create mesh from regions'
109
110        create_mesh_from_regions(bounding_polygon,
111                             boundary_tags=boundary_tags,
112                             maximum_triangle_area=project.res_poly_all,
113                             interior_regions=project.interior_regions,
114                             filename=project.meshes_dir_name+'.msh',
115                             use_cache=True,
116                             verbose=True)
117   # barrier()
118
119##        covariance_value,alpha = find_optimal_smoothing_parameter (data_file= kwargs['elevation_file'],
120##                                alpha_list=[0.001, 0.01, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5],
121##                                mesh_file = project.meshes_dir_name+'.msh')
122##        print 'optimal alpha', covariance_value,alpha       
123
124    #-------------------------------------------------------------------------
125    # Setup computational domain
126    #-------------------------------------------------------------------------
127    print 'Setup computational domain'
128
129    domain = Domain(project.meshes_dir_name+'.msh', use_cache=False, verbose=True)
130    print 'memory usage before del domain',mem_usage()
131       
132    print domain.statistics()
133    print 'triangles',len(domain)
134   
135    kwargs['act_num_trigs']=len(domain)
136
137
138    #-------------------------------------------------------------------------
139    # Setup initial conditions
140    #-------------------------------------------------------------------------
141    if myid == 0:
142
143        print 'Setup initial conditions'
144
145        from polygon import Polygon_function
146        #following sets the stage/water to be offcoast only
147        IC = Polygon_function( [(project.poly_mainland, 0)], default = kwargs['tide'],
148                                 geo_reference = domain.geo_reference)
149        domain.set_quantity('stage', IC)
150        #domain.set_quantity('stage',kwargs['tide'] )
151        domain.set_quantity('friction', kwargs['friction']) 
152       
153        print 'Start Set quantity',kwargs['elevation_file']
154
155        domain.set_quantity('elevation', 
156                            filename = kwargs['elevation_file'],
157                            use_cache = False,
158                            verbose = True,
159                            alpha = kwargs['alpha'])
160        print 'Finished Set quantity'
161    #barrier()
162
163##    #------------------------------------------------------
164##    # Create x,y,z file of mesh vertex!!!
165##    #------------------------------------------------------
166##        coord = domain.get_vertex_coordinates()
167##        depth = domain.get_quantity('elevation')
168##       
169##        # Write vertex coordinates to file
170##        filename=project.vertex_filename
171##        fid=open(filename,'w')
172##        fid.write('x (m), y (m), z(m)\n')
173##        for i in range(len(coord)):
174##            pt=coord[i]
175##            x=pt[0]
176##            y=pt[1]
177##            z=depth[i]
178##            fid.write('%.6f,%.6f,%.6f\n' %(x, y, z))
179##
180
181    #------------------------------------------------------
182    # Distribute domain to implement parallelism !!!
183    #------------------------------------------------------
184
185    if numprocs > 1:
186        domain=distribute(domain)
187
188    #------------------------------------------------------
189    # Set domain parameters
190    #------------------------------------------------------
191    print 'domain id', id(domain)
192    domain.set_name(kwargs['aa_scenario_name'])
193    domain.set_datadir(kwargs['output_dir'])
194    domain.set_default_order(2) # Apply second order scheme
195    domain.set_minimum_storable_height(0.01) # Don't store anything less than 1cm
196    domain.set_store_vertices_uniquely(False)
197    domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
198    domain.tight_slope_limiters = 1
199    print 'domain id', id(domain)
200
201    #-------------------------------------------------------------------------
202    # Setup boundary conditions
203    #-------------------------------------------------------------------------
204    print 'Available boundary tags', domain.get_boundary_tags()
205    print 'domain id', id(domain)
206   
207    boundary_urs_out=project.boundaries_dir_name
208
209    Br = Reflective_boundary(domain)
210    Bd = Dirichlet_boundary([kwargs['tide'],0,0])
211   
212    print 'Available boundary tags', domain.get_boundary_tags()
213    Bf = Field_boundary(boundary_urs_out+'.sts',  # Change from file_boundary
214                   domain, mean_stage= project.tide,
215                   time_thinning=1,
216                   default_boundary=Bd,
217                   use_cache=True,
218                   verbose = True,
219                   boundary_polygon=bounding_polygon)
220
221    domain.set_boundary({'back': Br,
222                         'side': Bd,
223                         'ocean': Bf}) 
224
225    kwargs['input_start_time']=domain.starttime
226
227    print'finish set boundary'
228
229    #----------------------------------------------------------------------------
230    # Evolve system through time
231    #--------------------------------------------------------------------
232    t0 = time.time()
233
234    for t in domain.evolve(yieldstep = project.yieldstep, finaltime = kwargs['finaltime']
235                       ,skip_initial_step = False): 
236        domain.write_time()
237        domain.write_boundary_statistics(tags = 'ocean')
238
239           
240    x, y = domain.get_maximum_inundation_location()
241    q = domain.get_maximum_inundation_elevation()
242
243    print 'Maximum runup observed at (%.2f, %.2f) with elevation %.2f' %(x,y,q)
244
245    print 'That took %.2f seconds' %(time.time()-t0)
246
247    #kwargs 'completed' must be added to write the final parameters to file
248    kwargs['completed']=str(time.time()-t0)
249   
250    if myid==0:
251        store_parameters(**kwargs)
252   # barrier
253   
254    print 'memory usage before del domain1',mem_usage()
255   
256   
257#-------------------------------------------------------------
258if __name__ == "__main__":
259   
260    kwargs={}
261    kwargs['est_num_trigs']=project.trigs_min
262    kwargs['num_cpu']=numprocs
263    kwargs['host']=project.host
264    kwargs['res_factor']=project.res_factor
265    kwargs['starttime']=project.starttime
266    kwargs['yieldstep']=project.yieldstep
267    kwargs['finaltime']=project.finaltime
268   
269    kwargs['output_dir']=project.output_run_time_dir
270    kwargs['elevation_file']=project.combined_dir_name+'.pts'
271    kwargs['file_name']=project.home+'detail.csv'
272    kwargs['aa_scenario_name']=project.scenario_name
273    kwargs['ab_time']=project.time
274    kwargs['res_factor']= project.res_factor
275    kwargs['tide']=project.tide
276    kwargs['user']=project.user
277    kwargs['alpha'] = project.alpha
278    kwargs['friction']=project.friction
279    kwargs['time_thinning'] = project.time_thinning
280    kwargs['dir_comment']=project.dir_comment
281    kwargs['export_cellsize']=project.export_cellsize
282   
283
284    run_model(**kwargs)
285     
286       #barrier
Note: See TracBrowser for help on using the repository browser.