source: anuga_work/production/geraldton/run_geraldton.py @ 6027

Last change on this file since 6027 was 6027, checked in by kristy, 16 years ago

general maintenance of scripts, added boundary to mesh in run_geraldton.py

File size: 9.9 KB
Line 
1"""Script for running a tsunami inundation scenario for geraldton, WA, Australia.
2
3The scenario is defined by a triangular mesh created from project.polygon,
4the elevation data is compiled into a pts file through build_geraldton.py
5and a simulated tsunami is generated through an sts file from build_boundary.py.
6
7Input: sts file (build_boundary.py for respective event)
8       pts file (build_geraldton.py)
9       information from project file
10Outputs: sww file stored in project.output_run_time_dir
11The export_results_all.py and get_timeseries.py is reliant
12on the outputs of this script
13
14Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
15Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
16"""
17
18#------------------------------------------------------------------------------
19# Import necessary modules
20#------------------------------------------------------------------------------
21
22# Standard modules
23from os import sep
24import os
25from os.path import dirname, basename
26from os import mkdir, access, F_OK
27from shutil import copy
28import time
29import sys
30
31# Related major packages
32from anuga.shallow_water import Domain
33from anuga.shallow_water import Dirichlet_boundary
34from anuga.shallow_water import File_boundary
35from anuga.shallow_water import Reflective_boundary
36from anuga.shallow_water import Field_boundary
37from Numeric import allclose
38from anuga.shallow_water.data_manager import export_grid, create_sts_boundary
39from anuga.pmesh.mesh_interface import create_mesh_from_regions
40from anuga.pmesh.mesh import importMeshFromFile
41from anuga.shallow_water.data_manager import start_screen_catcher, copy_code_files,store_parameters
42from anuga_parallel.parallel_abstraction import get_processor_name
43from anuga.caching import myhash
44from anuga.damage_modelling.inundation_damage import add_depth_and_momentum2csv, inundation_damage
45from anuga.fit_interpolate.benchmark_least_squares import mem_usage
46from anuga.utilities.polygon import read_polygon, plot_polygons, polygon_area, is_inside_polygon
47from anuga.geospatial_data.geospatial_data import find_optimal_smoothing_parameter,Geospatial_data
48from polygon import Polygon_function
49
50
51# Application specific imports
52import project  # Definition of file names and polygons
53numprocs = 1
54myid = 0
55
56def run_model(**kwargs):
57   
58    #------------------------------------------------------------------------------
59    # Copy scripts to time stamped output directory and capture screen
60    # output to file
61    #------------------------------------------------------------------------------
62    print "Processor Name:",get_processor_name()
63
64    #copy script must be before screen_catcher
65
66    print 'output_dir',kwargs['output_dir']
67   
68    copy_code_files(kwargs['output_dir'],__file__, 
69             dirname(project.__file__)+sep+ project.__name__+'.py' )
70
71    store_parameters(**kwargs)
72
73    start_screen_catcher(kwargs['output_dir'], myid, numprocs)
74
75    print "Processor Name:",get_processor_name()
76   
77    #-----------------------------------------------------------------------
78    # Domain definitions
79    #-----------------------------------------------------------------------
80
81    # Read in boundary from ordered sts file
82    urs_bounding_polygon=create_sts_boundary(os.path.join(project.boundaries_dir_event,project.scenario_name))
83
84    # Reading the landward defined points, this incorporates the original clipping
85    # polygon minus the 100m contour
86    landward_bounding_polygon = read_polygon(project.landward_dir)
87
88    # Combine sts polyline with landward points
89    bounding_polygon = urs_bounding_polygon + landward_bounding_polygon
90   
91    # counting segments
92    N = len(urs_bounding_polygon)-1
93
94    # boundary tags refer to project.landward 4 points equals 5 segments start at N
95    boundary_tags={'back': [N+2,N+3], 'side': [N,N+1,N+4], 'ocean': range(N)}
96
97    #--------------------------------------------------------------------------
98    # Create the triangular mesh based on overall clipping polygon with a tagged
99    # boundary and interior regions defined in project.py along with
100    # resolutions (maximal area of per triangle) for each polygon
101    #--------------------------------------------------------------------------
102
103    # IMPORTANT don't cache create_mesh_from_region and Domain(mesh....) as it
104    # causes problems with the ability to cache set quantity which takes alot of times
105       
106    print 'start create mesh from regions'
107
108    create_mesh_from_regions(bounding_polygon,
109                         boundary_tags=boundary_tags,
110                         maximum_triangle_area=project.res_poly_all,
111                         interior_regions=project.interior_regions,
112                         filename=project.meshes_dir_name,
113                         use_cache=False,
114                         verbose=True)
115
116    m = importMeshFromFile(project.meshes_dir_name)
117    # load points from a points file
118    m.add_points_and_segments(Geospatial_data(project.barrier_dir_name))
119    m.add_points_and_segments(Geospatial_data(project.barrier_dir_name1))
120    m.generate_mesh()
121    m.export_mesh_file(project.meshes_dir_name)
122   
123    #-------------------------------------------------------------------------
124    # Setup computational domain
125    #-------------------------------------------------------------------------
126    print 'Setup computational domain'
127
128    domain = Domain(project.meshes_dir_name, use_cache=False, verbose=True)
129    print 'memory usage before del domain',mem_usage()
130       
131    print domain.statistics()
132    print 'triangles',len(domain)
133   
134    kwargs['act_num_trigs']=len(domain)
135
136
137    #-------------------------------------------------------------------------
138    # Setup initial conditions
139    #-------------------------------------------------------------------------
140    print 'Setup initial conditions'
141
142    # sets the initial stage in the offcoast region only
143    IC = Polygon_function( [(project.poly_mainland, 0)], default = kwargs['tide'],
144                             geo_reference = domain.geo_reference)
145    domain.set_quantity('stage', IC)
146    #domain.set_quantity('stage',kwargs['tide'] )
147    domain.set_quantity('friction', kwargs['friction']) 
148   
149    print 'Start Set quantity',kwargs['elevation_file']
150
151    domain.set_quantity('elevation', 
152                        filename = kwargs['elevation_file'],
153                        use_cache = False,
154                        verbose = True,
155                        alpha = kwargs['alpha'])
156    print 'Finished Set quantity'
157
158##   #------------------------------------------------------
159##    # Distribute domain to implement parallelism !!!
160##    #------------------------------------------------------
161##
162##    if numprocs > 1:
163##        domain=distribute(domain)
164
165    #------------------------------------------------------
166    # Set domain parameters
167    #------------------------------------------------------
168    print 'domain id', id(domain)
169    domain.set_name(kwargs['scenario_name'])
170    domain.set_datadir(kwargs['output_dir'])
171    domain.set_default_order(2)                 # Apply second order scheme
172    domain.set_minimum_storable_height(0.01)    # Don't store anything less than 1cm
173    domain.set_store_vertices_uniquely(False)
174    domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
175    domain.tight_slope_limiters = 1
176    print 'domain id', id(domain)
177
178    #-------------------------------------------------------------------------
179    # Setup boundary conditions
180    #-------------------------------------------------------------------------
181    print 'Available boundary tags', domain.get_boundary_tags()
182    print 'domain id', id(domain)
183   
184    boundary_urs_out=project.boundaries_dir_event + sep + project.scenario_name
185
186    Br = Reflective_boundary(domain)
187    Bd = Dirichlet_boundary([kwargs['tide'],0,0])
188   
189    print 'Available boundary tags', domain.get_boundary_tags()
190    Bf = Field_boundary(boundary_urs_out+'.sts',  # Change from file_boundary
191                   domain, mean_stage= project.tide,
192                   time_thinning=1,
193                   default_boundary=Bd,
194                   use_cache=True,
195                   verbose = True,
196                   boundary_polygon=bounding_polygon)
197
198    domain.set_boundary({'back': Br,
199                         'side': Bd,
200                         'ocean': Bf}) 
201
202    kwargs['input_start_time']=domain.starttime
203
204    print'finish set boundary'
205
206    #----------------------------------------------------------------------------
207    # Evolve system through time
208    #--------------------------------------------------------------------
209    t0 = time.time()
210
211    for t in domain.evolve(yieldstep = project.yieldstep, finaltime = kwargs['finaltime']
212                       ,skip_initial_step = False): 
213        domain.write_time()
214        domain.write_boundary_statistics(tags = 'ocean')
215
216    # these outputs should be checked with the resultant inundation map
217    x, y = domain.get_maximum_inundation_location()
218    q = domain.get_maximum_inundation_elevation()
219    print 'Maximum runup observed at (%.2f, %.2f) with elevation %.2f' %(x,y,q)
220
221    print 'Simulation took %.2f seconds' %(time.time()-t0)
222
223    #kwargs 'completed' must be added to write the final parameters to file
224    kwargs['completed']=str(time.time()-t0)
225     
226    store_parameters(**kwargs)
227     
228    print 'memory usage before del domain1',mem_usage()
229   
230   
231#-------------------------------------------------------------
232if __name__ == "__main__":
233   
234    kwargs={}
235    kwargs['file_name']=project.dir_comment
236    kwargs['finaltime']=project.finaltime
237    kwargs['output_dir']=project.output_run_time_dir
238    kwargs['elevation_file']=project.combined_dir_name+'.pts'
239    kwargs['scenario_name']=project.scenario_name
240    kwargs['tide']=project.tide
241    kwargs['alpha'] = project.alpha
242    kwargs['friction']=project.friction
243    #kwargs['num_cpu']=numprocs
244    #kwargs['host']=project.host
245    #kwargs['starttime']=project.starttime
246    #kwargs['yieldstep']=project.yieldstep
247    #kwargs['user']=project.user
248    #kwargs['time_thinning'] = project.time_thinning
249     
250    run_model(**kwargs)
251     
252   
Note: See TracBrowser for help on using the repository browser.