source: anuga_work/production/hobart_2006/run_hobart.py @ 3679

Last change on this file since 3679 was 3679, checked in by sexton, 17 years ago

updates to Hobart scripts

File size: 8.3 KB
Line 
1"""Script for running a tsunami inundation scenario for Hobart, TAS, Australia.
2
3Source data such as elevation and boundary data is assumed to be available in
4directories specified by project.py
5The output sww file is stored in project.outputtimedir
6
7The scenario is defined by a triangular mesh created from project.polygon,
8the elevation data and a tsunami wave generated by MOST.
9
10Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis, GA - 2006
11"""
12#-------------------------------------------------------------------------------# Import necessary modules
13#-------------------------------------------------------------------------------
14
15# Standard modules
16import os
17import time
18from shutil import copy
19from os import mkdir, access, F_OK
20import sys
21
22# Related major packages
23from anuga.shallow_water import Domain, Reflective_boundary, \
24                            Dirichlet_boundary, Time_boundary, File_boundary
25from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf, dem2pts
26from anuga.abstract_2d_finite_volumes.combine_pts import combine_rectangular_points_files
27from anuga.geospatial_data.geospatial_data import *
28from anuga.abstract_2d_finite_volumes.util import Screen_Catcher
29
30# Application specific imports
31import project                 # Definition of file names and polygons
32
33#-------------------------------------------------------------------------------
34# Copy scripts to time stamped output directory and capture screen
35# output to file
36#-------------------------------------------------------------------------------
37
38# creates copy of code in output dir if dir doesn't exist
39if access(project.outputtimedir,F_OK) == 0 :
40    mkdir (project.outputtimedir)
41copy (project.codedirname, project.outputtimedir + project.codename)
42copy (project.codedir + 'run_hobart.py', project.outputtimedir + 'run_hobart.py')
43print'output dir', project.outputtimedir
44
45#normal screen output is stored in
46screen_output_name = project.outputtimedir + "screen_output.txt"
47screen_error_name = project.outputtimedir + "screen_error.txt"
48
49#used to catch screen output to file
50sys.stdout = Screen_Catcher(screen_output_name)
51#sys.stderr = Screen_Catcher(screen_output_name)
52sys.stderr = Screen_Catcher(screen_error_name)
53
54print 'USER:    ', project.user
55
56#-------------------------------------------------------------------------------
57# Preparation of topographic data
58#
59# Convert ASC 2 DEM 2 PTS using source data and store result in source data
60#-------------------------------------------------------------------------------
61
62# filenames
63onshore_offshore_dem_name = project.onshore_offshore_dem_name
64meshname = project.meshname+'.msh'
65source_dir = project.boundarydir
66
67copied_files = False
68
69# create DEM from asc data - 25m data
70convert_dem_from_ascii2netcdf(onshore_offshore_dem_name, use_cache=True, verbose=True)
71
72#creates pts file for combined DEM - 25
73dem2pts(onshore_offshore_dem_name, use_cache=True, verbose=True)
74
75# create geospatial data set and export
76G = Geospatial_data(file_name = project.onshore_offshore_dem_name + '.pts')
77G.export_points_file(project.combined_dem_name + '.pts')
78
79#----------------------------------------------------------------------------
80# Create the triangular mesh based on overall clipping polygon with a tagged
81# boundary and interior regions defined in project.py along with
82# resolutions (maximal area of per triangle) for each polygon
83#-------------------------------------------------------------------------------
84
85from anuga.pmesh.mesh_interface import create_mesh_from_regions
86
87# use 75 for onshore components (12.5m DEM)
88island_res = 35000
89hobart_res = 35000
90peninsula_res = 35000
91interior_regions = [[project.poly_hobart1, hobart_res],
92                    [project.poly_hobart2, hobart_res],
93                    [project.poly_hobart3, hobart_res]]
94
95print 'number of interior regions', len(interior_regions)
96
97from caching import cache
98_ = cache(create_mesh_from_regions,
99          project.polyAll,
100           {'boundary_tags': {'e0': [0], 'e1': [1], 'e2': [2],
101                              'e3': [3], 'e4':[4], 'e5': [5],
102                              'e6': [6], 'e7': [7], 'e8': [8],
103                              'e9': [9], 'e10': [10], 'e11': [11],
104                              'e12': [12], 'e13': [13], 'e14': [14],
105                              'e15': [15]},
106           'maximum_triangle_area': 250000,
107           'filename': meshname,           
108           'interior_regions': interior_regions},
109          verbose = True, evaluate=False)
110
111
112#-------------------------------------------------------------------------------                                 
113# Setup computational domain
114#-------------------------------------------------------------------------------                                 
115domain = Domain(meshname, use_cache = True, verbose = True)
116
117print 'Number of triangles = ', len(domain)
118print 'The extent is ', domain.get_extent()
119print domain.statistics()
120
121domain.set_name(project.basename)
122domain.set_datadir(project.outputtimedir)
123domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
124domain.set_minimum_storable_height(0.01)
125domain.set_store_vertices_uniquely(True)  # for writting to sww
126
127#-------------------------------------------------------------------------------                                 
128# Setup initial conditions
129#-------------------------------------------------------------------------------
130
131tide = 0.0
132
133domain.set_quantity('stage', tide)
134domain.set_quantity('friction', 0.0) 
135
136domain.set_quantity('elevation', 
137#                    filename = project.onshore_dem_name + '.pts',
138                    filename = project.combined_dem_name + '.pts',
139#                    filename = project.offshore_dem_name + '.pts',
140                    use_cache = True,
141                    verbose = True,
142                    alpha = 0.1
143                    )
144
145#-------------------------------------------------------------------------------                                 
146# Setup boundary conditions
147#-------------------------------------------------------------------------------
148print 'start ferret2sww'
149from anuga.shallow_water.data_manager import ferret2sww
150
151south = project.south
152north = project.north
153west = project.west
154east = project.east
155
156#note only need to do when an SWW file for the MOST boundary doesn't exist
157cache(ferret2sww,
158      (source_dir + project.boundary_basename,
159       source_dir + project.boundary_basename), 
160      {'verbose': True,
161       'minlat': south,
162       'maxlat': north,
163       'minlon': west,
164       'maxlon': east,
165#       'origin': project.mesh_origin,
166       'origin': domain.geo_reference.get_origin(),
167       'mean_stage': tide,
168       'zscale': 1,                 #Enhance tsunami
169       'fail_on_NaN': False,
170       'inverted_bathymetry': True},
171      #evaluate = True,
172       verbose = True,
173       dependencies = source_dir + project.boundary_basename + '.sww')
174
175
176print 'Available boundary tags', domain.get_boundary_tags()
177
178Bf = File_boundary(source_dir + project.boundary_basename + '.sww', 
179                    domain, verbose = True)
180Br = Reflective_boundary(domain)
181Bd = Dirichlet_boundary([tide,0,0])
182
183
184# 7 min square wave starting at 1 min, 6m high
185Bw = Time_boundary(domain = domain,
186                   f=lambda t: [(60<t<480)*10, 0, 0])
187
188# for MOST BC
189#domain.set_boundary( {'top': Bd, 'left': Bd,
190#                      'bottom': Bf, 'right': Bf} )
191
192# for testing
193#domain.set_boundary( {'topr': Bd, 'left': Bd, 'top': Bd,
194#                      'bottom': Bw, 'bright': Bd} )
195domain.set_boundary( {'e0': Bd, 'e1': Bd, 'e2': Bd, 'e3': Bd, 'e4': Bd,
196                        'e5': Bd, 'e6': Bd, 'e7': Bd, 'e8': Bd, 'e9': Bd,
197                        'e10': Bd, 'e11': Bd, 'e12': Bd, 'e13': Bd, 'e14': Bf,
198                        'e15': Bd} )
199
200#-------------------------------------------------------------------------------                                 
201# Evolve system through time
202#-------------------------------------------------------------------------------
203import time
204t0 = time.time()
205
206for t in domain.evolve(yieldstep = 240, finaltime = 6800): 
207    domain.write_time()
208    domain.write_boundary_statistics(tags = 'bottom')     
209
210for t in domain.evolve(yieldstep = 30, finaltime = 9000
211                       ,skip_initial_step = True): 
212    domain.write_time()
213    domain.write_boundary_statistics(tags = 'bottom')     
214
215for t in domain.evolve(yieldstep = 240, finaltime = 15000
216                       ,skip_initial_step = True): 
217    domain.write_time()
218    domain.write_boundary_statistics(tags = 'bottom') 
219   
220print 'That took %.2f seconds' %(time.time()-t0)
221
222print 'finished'
Note: See TracBrowser for help on using the repository browser.