"""Script for running a tsunami inundation scenario for Hobart, TAS, Australia. Source data such as elevation and boundary data is assumed to be available in directories specified by project.py The output sww file is stored in project.outputtimedir The scenario is defined by a triangular mesh created from project.polygon, the elevation data and a tsunami wave generated by MOST. Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis, GA - 2006 """ #-------------------------------------------------------------------------------# Import necessary modules #------------------------------------------------------------------------------- # Standard modules import os import time from shutil import copy from os import mkdir, access, F_OK import sys # Related major packages from anuga.shallow_water import Domain, Reflective_boundary, \ Dirichlet_boundary, Time_boundary, File_boundary from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf, dem2pts from anuga.abstract_2d_finite_volumes.combine_pts import combine_rectangular_points_files from anuga.geospatial_data.geospatial_data import * from anuga.abstract_2d_finite_volumes.util import Screen_Catcher # Application specific imports import project # Definition of file names and polygons #------------------------------------------------------------------------------- # Copy scripts to time stamped output directory and capture screen # output to file #------------------------------------------------------------------------------- # creates copy of code in output dir if dir doesn't exist if access(project.outputtimedir,F_OK) == 0 : mkdir (project.outputtimedir) copy (project.codedirname, project.outputtimedir + project.codename) copy (project.codedir + 'run_hobart.py', project.outputtimedir + 'run_hobart.py') print'output dir', project.outputtimedir #normal screen output is stored in screen_output_name = project.outputtimedir + "screen_output.txt" screen_error_name = project.outputtimedir + "screen_error.txt" #used to catch screen output to file sys.stdout = Screen_Catcher(screen_output_name) #sys.stderr = Screen_Catcher(screen_output_name) sys.stderr = Screen_Catcher(screen_error_name) print 'USER: ', project.user #------------------------------------------------------------------------------- # Preparation of topographic data # # Convert ASC 2 DEM 2 PTS using source data and store result in source data #------------------------------------------------------------------------------- # filenames onshore_offshore_dem_name = project.onshore_offshore_dem_name onshore_offshore_dem_name_25 = project.onshore_offshore_dem_name_25 meshname = project.meshname+'.msh' source_dir = project.boundarydir copied_files = False # create DEM from 50m asc data convert_dem_from_ascii2netcdf(onshore_offshore_dem_name, use_cache=True, verbose=True) # creates pts file for combined 50m DEM dem2pts(onshore_offshore_dem_name, use_cache=True, verbose=True) # 25m data (clipping the around the Hobart area) convert_dem_from_ascii2netcdf(onshore_offshore_dem_name_25, use_cache=True, verbose=True) # creates pts file for 25m data around Hobart dem2pts(onshore_offshore_dem_name_25, project.hobart_dem_name_25, easting_min=project.eastingmin25, easting_max=project.eastingmax25, northing_min=project.northingmin25, northing_max= project.northingmax25, use_cache=True, verbose=True) # combining the 50m and Hobart 25m data combine_rectangular_points_files(project.hobart_dem_name_25 + '.pts', project.onshore_offshore_dem_name + '.pts', project.combined_dem_name + '.pts') # 25m data (clipping the around site 24 on Bruny Island) convert_dem_from_ascii2netcdf(onshore_offshore_dem_name_25, use_cache=True, verbose=True) # creates pts file for 25m data around site 24 at Bruny Island dem2pts(onshore_offshore_dem_name_25, project.bruny_dem_name_25, easting_min=project.eastingmin25_2, easting_max=project.eastingmax25_2, northing_min=project.northingmin25_2, northing_max= project.northingmax25_2, use_cache=True, verbose=True) # combining the 50m and Hobart 25m data with Bruny Island 25m data combine_rectangular_points_files(project.bruny_dem_name_25 + '.pts', project.combined_dem_name + '.pts', project.combined_dem_name_2 + '.pts') # create geospatial data set and export #G = Geospatial_data(file_name = project.onshore_offshore_dem_name + '.pts') #G.export_points_file(project.combined_dem_name + '.pts') #---------------------------------------------------------------------------- # Create the triangular mesh based on overall clipping polygon with a tagged # boundary and interior regions defined in project.py along with # resolutions (maximal area of per triangle) for each polygon #------------------------------------------------------------------------------- from anuga.pmesh.mesh_interface import create_mesh_from_regions # use 75 for onshore components (12.5m DEM) island_res = 35000 hobart_res = 5000 peninsula_res = 35000 interior_regions = [[project.poly_hobart1, hobart_res], [project.poly_hobart2, hobart_res], [project.poly_hobart3, hobart_res], [project.poly_hobart4, hobart_res]] print 'number of interior regions', len(interior_regions) from caching import cache _ = cache(create_mesh_from_regions, project.polyAll, {'boundary_tags': {'e0': [0], 'e1': [1], 'e2': [2], 'e3': [3], 'e4':[4], 'e5': [5], 'e6': [6], 'e7': [7], 'e8': [8], 'e9': [9], 'e10': [10], 'e11': [11], 'e12': [12], 'e13': [13], 'e14': [14], 'e15': [15]}, 'maximum_triangle_area': 200000, 'filename': meshname, 'interior_regions': interior_regions}, verbose = True, evaluate=False) #------------------------------------------------------------------------------- # Setup computational domain #------------------------------------------------------------------------------- domain = Domain(meshname, use_cache = True, verbose = True) print 'Number of triangles = ', len(domain) print 'The extent is ', domain.get_extent() print domain.statistics() domain.set_name(project.basename) domain.set_datadir(project.outputtimedir) domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) domain.set_minimum_storable_height(0.01) domain.set_store_vertices_uniquely(False) # for writting to sww #------------------------------------------------------------------------------- # Setup initial conditions #------------------------------------------------------------------------------- tide = 0.0 domain.set_quantity('stage', tide) domain.set_quantity('friction', 0.0) domain.set_quantity('elevation', # filename = project.onshore_dem_name + '.pts', filename = project.combined_dem_name_2 + '.pts', # filename = project.offshore_dem_name + '.pts', use_cache = True, verbose = True, alpha = 0.1 ) #------------------------------------------------------------------------------- # Setup boundary conditions #------------------------------------------------------------------------------- print 'start ferret2sww' from anuga.shallow_water.data_manager import ferret2sww south = project.south north = project.north west = project.west east = project.east #note only need to do when an SWW file for the MOST boundary doesn't exist cache(ferret2sww, (source_dir + project.boundary_basename, source_dir + project.boundary_basename), {'verbose': True, 'minlat': south, 'maxlat': north, 'minlon': west, 'maxlon': east, # 'origin': project.mesh_origin, 'origin': domain.geo_reference.get_origin(), 'mean_stage': tide, 'zscale': 1, #Enhance tsunami 'fail_on_NaN': False, 'inverted_bathymetry': True}, #evaluate = True, verbose = True, dependencies = source_dir + project.boundary_basename + '.sww') print 'Available boundary tags', domain.get_boundary_tags() Bf = File_boundary(source_dir + project.boundary_basename + '.sww', domain, verbose = True) Br = Reflective_boundary(domain) Bd = Dirichlet_boundary([tide,0,0]) # 7 min square wave starting at 1 min, 6m high Bw = Time_boundary(domain = domain, f=lambda t: [(60