source: anuga_work/production/mandurah_storm_surge_2009/run_model.py.bak @ 7614

Last change on this file since 7614 was 7614, checked in by fountain, 14 years ago

mandurah storm surge modelling

File size: 6.8 KB
Line 
1"""Run a storm surge inundation scenario for Mandurah, WA, Australia using
2input from the third party consultant GEMS.
3
4The scenario is defined by a triangular mesh created from project.polygon, the
5elevation data is compiled into a pts file through build_elevation.py and a
6simulated storm surge is generated from GEMS data.
7
8Input: sts files (csv format time series at ocean boundary for respective event)
9       pts file (build_elevation.py)
10       information from project file
11Outputs: sww file stored in project.output_run_time_dir
12The export_results_all.py and get_timeseries.py is reliant
13on the outputs of this script
14
15Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
16Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
17Nariman Habili, Leharne Fountain - 2009
18"""
19
20#------------------------------------------------------------------------------
21# Import necessary modules
22#------------------------------------------------------------------------------
23
24# Standard modules
25import os
26##import os.path
27import time
28##from time import localtime, strftime, gmtime
29
30# Related major packages
31##from Scientific.IO.NetCDF import NetCDFFile
32import numpy as num
33
34from anuga.interface import create_domain_from_regions
35from anuga.interface import Transmissive_stage_zero_momentum_boundary
36from anuga.interface import Dirichlet_boundary
37from anuga.interface import Reflective_boundary
38from anuga.interface import Field_boundary
39##from anuga.interface import create_sts_boundary
40##from anuga.interface import csv2building_polygons
41from file_length import file_length
42
43from anuga.shallow_water.data_manager import start_screen_catcher
44from anuga.shallow_water.data_manager import copy_code_files
45##from anuga.shallow_water.data_manager import urs2sts
46from anuga.utilities.polygon import read_polygon, Polygon_function
47
48# Application specific imports
49#import project
50##import build_urs_boundary as bub
51
52import pdb
53pdb.set_trace()
54
55#-------------------------------------------------------------------------------
56# Copy scripts to time stamped output directory and capture screen
57# output to file. Copy script must be before screen_catcher
58#-------------------------------------------------------------------------------
59
60copy_code_files(project.output_run, __file__,
61                os.path.join(os.path.dirname(project.__file__),
62                             project.__name__+'.py'))
63start_screen_catcher(project.output_run, 0, 1)
64
65#-------------------------------------------------------------------------------
66# Create the computational domain based on overall clipping polygon with
67# a tagged boundary and interior regions defined in project.py along with
68# resolutions (maximal area of per triangle) for each polygon
69#-------------------------------------------------------------------------------
70
71print 'Create computational domain'
72
73### Create the STS file
74##print 'project.mux_data_folder=%s' % project.mux_data_folder
75##if not os.path.exists(project.event_sts + '.sts'):
76##    bub.build_urs_boundary(project.mux_input_filename, project.event_sts)
77
78### Read in boundary from ordered sts file
79##event_sts = create_sts_boundary(project.event_sts)
80
81# Reading the landward defined points of the original bounding polygon
82landward_boundary = read_polygon(project.landward_boundary)
83
84#reading the GEMS boundary points
85gems_boundary = read_polygon(project.gems_order)
86
87# Combine GEMS input boundary polyline with landward points
88bounding_polygon_gems = gems_boundary + landward_boundary
89
90# Number of boundary segments
91num_ocean_segments = len(gems_boundary) - 1
92# Number of landward_boundary points
93num_land_points = file_length(project.landward_boundary)
94
95# Boundary tags refer to project.landward_boundary
96# 4 points equals 5 segments start at N
97boundary_tags={'back': range(num_ocean_segments+1,
98                             num_ocean_segments+num_land_points),
99               'side': [num_ocean_segments,
100                        num_ocean_segments+num_land_points],
101               'ocean': range(num_ocean_segments)}
102
103# Build mesh and domain
104domain = create_domain_from_regions(bounding_polygon_gems,
105                                    boundary_tags=boundary_tags,
106                                    maximum_triangle_area=project.bounding_maxarea,
107                                    interior_regions=project.interior_regions,
108                                    mesh_filename=project.meshes,
109                                    use_cache=False, #usually true but changed for testing
110                                    verbose=True)
111print domain.statistics()
112
113domain.set_name(project.scenario_name)
114domain.set_datadir(project.output_run)
115domain.set_minimum_storable_height(0.01)    # Don't store depth less than 1cm
116
117#-------------------------------------------------------------------------------
118# Setup initial conditions
119#-------------------------------------------------------------------------------
120
121print 'Setup initial conditions'
122
123# Set the initial stage in the offcoast region only
124if project.land_initial_conditions:
125    IC = Polygon_function(project.land_initial_conditions,
126                          default=project.tide,
127                          geo_reference=domain.geo_reference)
128else:
129    IC = 0
130domain.set_quantity('stage', IC, use_cache=True, verbose=True)
131domain.set_quantity('friction', project.friction)
132domain.set_quantity('elevation',
133                    filename=project.combined_elevation+'.pts',
134                    use_cache=True,
135                    verbose=True,
136                    alpha=project.alpha)
137
138#-------------------------------------------------------------------------------
139# Setup boundary conditions
140#-------------------------------------------------------------------------------
141
142print 'Set boundary - available tags:', domain.get_boundary_tags()
143
144Br = Reflective_boundary(domain)
145Bt = Transmissive_stage_zero_momentum_boundary(domain)
146Bd = Dirichlet_boundary([project.tide, 0, 0])
147Bf = Field_boundary(project.event_sts+'.sts',
148                    domain, mean_stage=project.tide,
149                    time_thinning=1,
150                    default_boundary=Dirichlet_boundary([0, 0, 0]),
151                    boundary_polygon=bounding_polygon_sts,                   
152                    use_cache=True,
153                    verbose=True)
154
155domain.set_boundary({'back': Br,
156                     'side': Bt,
157                     'ocean': Bf})
158
159#-------------------------------------------------------------------------------
160# Evolve system through time
161#-------------------------------------------------------------------------------
162
163t0 = time.time()
164for t in domain.evolve(yieldstep=project.yieldstep,
165                       finaltime=project.finaltime,
166                       skip_initial_step=False):
167    print domain.timestepping_statistics()
168    print domain.boundary_statistics(tags='ocean')
169
170print 'Simulation took %.2f seconds' % (time.time()-t0)
Note: See TracBrowser for help on using the repository browser.