source: anuga_work/production/mandurah_storm_surge_2009/run_model.py @ 7627

Last change on this file since 7627 was 7614, checked in by fountain, 14 years ago

mandurah storm surge modelling

File size: 7.0 KB
Line 
1"""Run a storm surge inundation scenario for Mandurah, WA, Australia using
2input from the third party consultant GEMS.
3
4The scenario is defined by a triangular mesh created from project.polygon, the
5elevation data is compiled into a pts file through build_elevation.py and a
6simulated storm surge is generated from GEMS data.
7
8Input: sts files (csv format time series at ocean boundary for respective event)
9       pts file (build_elevation.py)
10       information from project file
11Outputs: sww file stored in project.output_run_time_dir
12The export_results_all.py and get_timeseries.py is reliant
13on the outputs of this script
14
15Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
16Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
17Nariman Habili, Leharne Fountain - 2009
18"""
19
20#------------------------------------------------------------------------------
21# Import necessary modules
22#------------------------------------------------------------------------------
23
24# Standard modules
25import os
26##import os.path
27import time
28##from time import localtime, strftime, gmtime
29
30# Related major packages
31##from Scientific.IO.NetCDF import NetCDFFile
32import numpy as num
33
34from anuga.interface import create_domain_from_regions
35from anuga.interface import Transmissive_stage_zero_momentum_boundary
36from anuga.interface import Dirichlet_boundary
37from anuga.interface import Reflective_boundary
38from anuga.interface import Field_boundary
39from anuga.interface import create_sts_boundary
40##from anuga.interface import csv2building_polygons
41from file_length import file_length
42
43from anuga.shallow_water.data_manager import start_screen_catcher
44from anuga.shallow_water.data_manager import copy_code_files
45##from anuga.shallow_water.data_manager import urs2sts
46from anuga.utilities.polygon import read_polygon, Polygon_function
47
48# Application specific imports
49from setup_model import project
50##import build_urs_boundary as bub
51
52
53#-------------------------------------------------------------------------------
54# Copy scripts to time stamped output directory and capture screen
55# output to file. Copy script must be before screen_catcher
56#-------------------------------------------------------------------------------
57
58copy_code_files(project.output_run, __file__, 
59                os.path.join(os.path.dirname(project.__file__),
60                             project.__name__+'.py'))
61start_screen_catcher(project.output_run, 0, 1)
62
63#-------------------------------------------------------------------------------
64# Create the computational domain based on overall clipping polygon with
65# a tagged boundary and interior regions defined in project.py along with
66# resolutions (maximal area of per triangle) for each polygon
67#-------------------------------------------------------------------------------
68
69print 'Create computational domain'
70
71### Create the STS file
72##print 'project.mux_data_folder=%s' % project.mux_data_folder
73##if not os.path.exists(project.event_sts + '.sts'):
74##    bub.build_urs_boundary(project.mux_input_filename, project.event_sts)
75
76### Read in boundary from ordered sts file
77##gems_boundary = create_sts_boundary(project.event_sts)
78
79#reading the GEMS boundary points
80gems_boundary = read_polygon(project.gems_order)
81##gems_boundary = create_sts_boundary(project.event_sts)
82
83# Reading the landward defined points of the original bounding polygon
84landward_boundary = read_polygon(project.landward_boundary)
85
86# Combine GEMS input boundary polyline with landward points
87bounding_polygon_gems = gems_boundary + landward_boundary
88
89# Number of boundary segments
90num_ocean_segments = len(gems_boundary) - 1
91# Number of landward_boundary points
92num_land_points = file_length(project.landward_boundary)
93
94# Boundary tags refer to project.landward_boundary
95# 4 points equals 5 segments start at N
96boundary_tags={'back': range(num_ocean_segments+1,
97                             num_ocean_segments+num_land_points),
98               'side': [num_ocean_segments,
99                        num_ocean_segments+num_land_points],
100               'ocean': range(num_ocean_segments)}
101
102# Build mesh and domain
103domain = create_domain_from_regions(bounding_polygon_gems,
104                                    boundary_tags=boundary_tags,
105                                    maximum_triangle_area=project.bounding_maxarea,
106                                    interior_regions=project.interior_regions,
107                                    mesh_filename=project.meshes,
108                                    use_cache=False, #usually true but changed for testing
109                                    verbose=True)
110print domain.statistics()
111
112domain.set_name(project.scenario_name)
113domain.set_datadir(project.output_run) 
114domain.set_minimum_storable_height(0.01)    # Don't store depth less than 1cm
115
116#-------------------------------------------------------------------------------
117# Setup initial conditions
118#-------------------------------------------------------------------------------
119
120print 'Setup initial conditions'
121
122# Set the initial stage in the offcoast region only
123if project.land_initial_conditions:
124    IC = Polygon_function(project.land_initial_conditions,
125                          default=project.tide,
126                          geo_reference=domain.geo_reference)
127else:
128    IC = 0
129domain.set_quantity('stage', IC, use_cache=True, verbose=True)
130domain.set_quantity('friction', project.friction) 
131domain.set_quantity('elevation', 
132                    filename=project.combined_elevation+'.pts',
133                    use_cache=True,
134                    verbose=True,
135                    alpha=project.alpha)
136
137#-------------------------------------------------------------------------------
138# Setup boundary conditions
139#-------------------------------------------------------------------------------
140
141print 'Set boundary - available tags:', domain.get_boundary_tags()
142
143Br = Reflective_boundary(domain)
144Bt = Transmissive_stage_zero_momentum_boundary(domain)
145Bd = Dirichlet_boundary([project.tide, 0, 0])
146Bf = Field_boundary(project.event_sts+'.sts',
147                    domain, mean_stage=project.tide,
148                    time_thinning=1,
149                    default_boundary=Dirichlet_boundary([0, 0, 0]),
150                    boundary_polygon=bounding_polygon_gems,                   
151                    use_cache=True,
152                    verbose=True)
153
154domain.set_boundary({'back': Br,
155                     'side': Bt,
156                     'ocean': Bf}) 
157
158#-------------------------------------------------------------------------------
159# Evolve system through time
160#-------------------------------------------------------------------------------
161
162t0 = time.time()
163for t in domain.evolve(yieldstep=project.yieldstep, 
164                       finaltime=project.finaltime,
165                       skip_initial_step=False): 
166    print domain.timestepping_statistics()
167    print domain.boundary_statistics(tags='ocean')
168
169print 'Simulation took %.2f seconds' % (time.time()-t0)
170
Note: See TracBrowser for help on using the repository browser.