source: anuga_work/production/newcastle_2006/run_newcastle_slide.py @ 4354

Last change on this file since 4354 was 4346, checked in by sexton, 18 years ago

slide modelling updates and slide report updates

File size: 7.9 KB
Line 
1"""Script for running a tsunami inundation scenario for Newcastle, NSW, Australia.
2
3Source data such as elevation and boundary data is assumed to be available in
4directories specified by project_slide.py
5The output sww file is stored in project_slide.outputtimedir
6
7The scenario is defined by a triangular mesh created from project_slide.polygon,
8the elevation data and a tsunami wave generated by s submarine mass failure.
9
10Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis, GA - 2006
11"""
12
13#-------------------------------------------------------------------------------
14# Import necessary modules
15#-------------------------------------------------------------------------------
16
17# Standard modules
18import os
19import time
20from shutil import copy
21from os.path import dirname, basename
22from os import mkdir, access, F_OK, sep
23import sys
24
25# Related major packages
26from anuga.shallow_water import Domain, Reflective_boundary, Dirichlet_boundary
27from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf, dem2pts
28from anuga.geospatial_data.geospatial_data import *
29from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, copy_code_files
30
31# Application specific imports
32import project_slide              # Definition of file names and polygons
33
34#-------------------------------------------------------------------------------
35# Copy scripts to time stamped output directory and capture screen
36# output to file
37#-------------------------------------------------------------------------------
38
39# creates copy of code in output dir
40copy_code_files(project_slide.outputtimedir,__file__,dirname(project_slide.__file__)+sep+ project_slide.__name__+'.py' )
41myid = 0
42numprocs = 1
43start_screen_catcher(project_slide.outputtimedir, myid, numprocs)
44
45print 'USER:    ', project_slide.user
46
47#-------------------------------------------------------------------------------
48# Preparation of topographic data
49#
50# Convert ASC 2 DEM 2 PTS using source data and store result in source data
51#-------------------------------------------------------------------------------
52
53# filenames
54nsw_dem_name = project_slide.nsw_dem_name
55meshname = project_slide.meshname+'.msh'
56
57# creates DEM from asc data
58convert_dem_from_ascii2netcdf(nsw_dem_name, use_cache=True, verbose=True)
59
60#creates pts file for onshore DEM
61dem2pts(nsw_dem_name,
62        easting_min=project_slide.eastingmin_nsw,
63        easting_max=project_slide.eastingmax_nsw,
64        northing_min=project_slide.northingmin_nsw,
65        northing_max= project_slide.northingmax_nsw,
66        use_cache=True, verbose=True)
67
68print 'create offshore'
69G11 = Geospatial_data(file_name = project_slide.offshore_dem_name2 + '.xya')+\
70      Geospatial_data(file_name = project_slide.offshore_dem_name3 + '.xya')
71G12 = Geospatial_data(file_name = project_slide.offshore_dem_name4 + '.xya')+\
72      Geospatial_data(file_name = project_slide.offshore_dem_name5 + '.xya')+\
73      Geospatial_data(file_name = project_slide.offshore_dem_name6 + '.xya')+\
74      Geospatial_data(file_name = project_slide.offshore_dem_name7 + '.xya')+\
75      Geospatial_data(file_name = project_slide.offshore_dem_name8 + '.xya')+\
76      Geospatial_data(file_name = project_slide.offshore_dem_name9 + '.xya')
77print 'create onshore'
78G4 = Geospatial_data(file_name = project_slide.nsw_dem_name + '.pts')
79print 'add'
80G = G11.clip(Geospatial_data(project_slide.poly_surveyclip)) +\
81    G12.clip(Geospatial_data(project_slide.polyAll)) +\
82    (G4.clip(Geospatial_data(project_slide.polyAll)).clip_outside(Geospatial_data(project_slide.poly_surveyclip)))
83print 'export points'
84G.export_points_file(project_slide.combined_dem_name + '.pts')
85#G.export_points_file(project_slide.combined_dem_name + '.xya')
86
87
88#----------------------------------------------------------------------------
89# Create the triangular mesh based on overall clipping polygon with a tagged
90# boundary and interior regions defined in project_slide.py along with
91# resolutions (maximal area of per triangle) for each polygon
92#-------------------------------------------------------------------------------
93
94from anuga.pmesh.mesh_interface import create_mesh_from_regions
95remainder_res = 500000
96local_res = 50000
97newcastle_res = 1000
98interior_regions = [[project_slide.poly_local, local_res],
99                    [project_slide.poly_newcastle, newcastle_res]]
100
101from caching import cache
102_ = cache(create_mesh_from_regions,
103          project_slide.polyAll,
104           {'boundary_tags': {'e0': [0], 'e1': [1], 'e2': [2],
105                              'e3': [3], 'e4':[4], 'e5': [5]},
106           'maximum_triangle_area': remainder_res,
107           'filename': meshname,
108           'interior_regions': interior_regions},
109          verbose = True, evaluate=False)
110print 'created mesh'
111
112#-------------------------------------------------------------------------------                                 
113# Setup computational domain
114#-------------------------------------------------------------------------------                                 
115domain = Domain(meshname, use_cache = True, verbose = True)
116
117print 'Number of triangles = ', len(domain)
118print 'The extent is ', domain.get_extent()
119print domain.statistics()
120
121domain.set_name(project_slide.basename)
122domain.set_datadir(project_slide.outputtimedir)
123domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
124domain.set_minimum_storable_height(0.01)
125
126#-------------------------------------------------------------------------------                                 
127# Setup initial conditions
128#-------------------------------------------------------------------------------
129
130tide = 0.0
131domain.set_quantity('stage', tide)
132domain.set_quantity('friction', 0.0) 
133domain.set_quantity('elevation', 
134                    filename = project_slide.combined_dem_name + '.pts',
135                    use_cache = False,
136                    verbose = True,
137                    alpha = 0.1
138                    )
139
140#-------------------------------------------------------------------------------
141# Set up scenario (tsunami_source is a callable object used with set_quantity)
142#-------------------------------------------------------------------------------
143from smf import slide_tsunami
144
145tsunami_source = slide_tsunami(length=project_slide.yacaaba_length,
146                               width=project_slide.yacaaba_width,
147                               depth=project_slide.yacaaba_depth,
148                               slope=project_slide.yacaaba_slope,
149                               thickness=project_slide.yacaaba_thickness, 
150                               x0=project_slide.slide_origin_yacaaba[0], 
151                               y0=project_slide.slide_origin_yacaaba[1], 
152                               alpha=project_slide.yacaaba_alpha, 
153                               domain=domain)
154
155#-------------------------------------------------------------------------------                                 
156# Setup boundary conditions
157#-------------------------------------------------------------------------------
158print 'Available boundary tags', domain.get_boundary_tags()
159
160Br = Reflective_boundary(domain)
161Bd = Dirichlet_boundary([tide,0,0])
162
163domain.set_boundary( {'e0': Bd,  'e1': Bd, 'e2': Bd, 'e3': Bd,
164                      'e4': Bd, 'e5': Bd} )
165
166
167#-------------------------------------------------------------------------------                                 
168# Evolve system through time
169#-------------------------------------------------------------------------------
170import time
171t0 = time.time()
172from Numeric import allclose
173from anuga.abstract_2d_finite_volumes.quantity import Quantity
174
175for t in domain.evolve(yieldstep = 30, finaltime = 10000): 
176    domain.write_time()
177    domain.write_boundary_statistics(tags = 'e14')
178    stagestep = domain.get_quantity('stage') 
179
180    if allclose(t, 30):
181        slide = Quantity(domain)
182        slide.set_values(tsunami_source)
183        domain.set_quantity('stage', slide + stagestep)
184   
185print 'That took %.2f seconds' %(time.time()-t0)
186
187print 'finished'
Note: See TracBrowser for help on using the repository browser.