source: anuga_work/production/sydney_2006/report/anuga_setup.tex @ 4309

Last change on this file since 4309 was 4309, checked in by sexton, 17 years ago

slide report updates

File size: 7.0 KB
Line 
1The following information is required to undertake the
2inundation modelling;
3
4\begin{itemize}
5\item onshore and offshore elevation data (topographic and bathymetric data,
6see Section \ref{sec:data}),
7\item initial conditions, such as initial water levels (e.g. determined by tides) and the tsunami source
8as described in Section \ref{sec:methodology},
9\item boundary conditions and
10\item computational requirements relating to the mesh construction.
11\end{itemize}
12 
13Here, we choose the inital tidal levels to be MSL, i.e. 0m AHD.
14The dynamics of
15tidal effects (that is, the changes in water height over time for
16the entire study area) are not currently modelled.
17
18To set up a model for the tsunami scenario, a study area is first determined.
19The finite volume technique relies on the construction of a triangular mesh which covers the study region.
20This mesh can be altered to suit the needs of the scenario in question. The mesh can be refined in areas of
21interest, particularly in the coastal region where complex behaviour is likely to occur. For the purpose
22of this study, we will refine the mesh around the major population centres and adjoining coastlines.
23In setting up the model, the user defines the area of the triangular cells in each region of interest\footnote{Note that the cell
24area will be the maximum cell area within the defined region and that each
25cell in the region does not necessarily have the same area.}.
26
27Figures \ref{fig:regionA}, \ref{fig:regionB} and \ref{fig:regionC} show the study areas with regions
28of different cell areas for regions A, B and C
29respectively. The study areas have been defined where data
30is available. The total number of cells are 395403, 499816, 518362 and for regions A, B and C respectively.
31Each study area approximately centres the slide origin and extends approximately 50 - 100 km east of each origin. Typically,
32the region 
33extends offshore to around the 3000-4000m depth contour with the onshore data covering the
34area of interest. Typical models do not extend to these depths, however, the extent has been increased
35to ensure the surface elevation function generated for the slide failure is captured in the domain.
36The study areas are approximately 19000 km$^2$, 10350 km$^2$ and 20900 km$^2$ 
37for regions A, B and C respectively.
38Lateral accuracy refers to the distance at which we are confident in stating a region is inundated.
39Figures \ref{fig:regionA}, \ref{fig:regionB} and \ref{fig:regionC} show
40the maximum triangular cell area and lateral accuracy for each region.
41Therefore we can only be confident in the calculated inundation extent surrounding major populations centres to within 30 m.
42
43\begin{figure}[hbt]
44
45  \centerline{ \includegraphics[scale=0.5]{../report_figures/regionAmodel.jpg}}
46
47  \caption{Study area for region A highlighting four regions of increased refinement.
48Region 1: Surrounding major population centre of Wollongong with a cell area of 500 m$^2$ (lateral accuracy 30 m).
49Region 2: Surrounding Lake Illawarra (south of Wollongong) with a cell area of 500 m$^2$ (lateral accuracy 30 m).
50Region 3: Surrounds the coastal regions with a cell area of 25000 m$^2$ (lateral accuracy 220 m).
51Region 4: The remaining area is given a cell area of 1000000 m$^2$ (lateral accuracy 1400 m).
52}
53  \label{fig:regionA}
54\end{figure}
55
56\begin{figure}[hbt]
57
58  \centerline{ \includegraphics[scale=0.5]{../report_figures/regionBmodel.jpg}}
59
60  \caption{Study area for region B highlighting three regions of increased refinement.
61Region 1: Surrounding the entrance to Sydney harbour, Northern Beaches and Botany Bay with a cell area of 500 m$^2$ (lateral accuracy 30 m).
62Region 2: Surrounding the coastal regions with a cell area of 50000 m$^2$ (lateral accuracy 315 m).
63Region 3: The remaining area is given a cell area of 250000 m$^2$ (lateral accuracy 700 m).
64}
65  \label{fig:regionB}
66\end{figure}
67
68\begin{figure}[hbt]
69
70  \centerline{ \includegraphics[scale=0.5]{../report_figures/regionCmodel.jpg}}
71
72  \caption{Study area for region C highlighting three regions of increased refinement.
73Region 1: Surrounding the major population centre of Newcastle with a cell area of 1000 m$^2$ (lateral accuracy 45 m).
74Region 2: Surrounding the coastal regions with a cell area of 50000 m$^2$ (lateral accuracy  315 m).
75Region 3: The remaining area is given a cell area of 500000 m$^2$ (lateral accuracy  1000 m).
76}
77  \label{fig:regionC}
78\end{figure}
79
80The final item to be addressed to complete the model setup is the
81definition of the boundary condition. The tsunami source in this
82study is given as an initial condition, as opposed to a boundary
83condition to studies when the tsunami is generated by an undersea
84earthquake. Hence, the boundary conditions for this model will
85be Dirichlet boundary conditions, that is, all quantities are
86given constant values. Here, stage and velocity at the boundaries
87are set to 0.
88
89Sea floor friction will generally provide resistance to the water flow
90and thus reduce the impact somewhat. However, limited
91research has been carried out to determine
92the friction coefficients, and
93thus it has not been incorporated
94in the scenario. The
95results are therefore likely to be over estimates.
96
97The following table summarises the other modelling parameters;
98
99
100\begin{table}
101\begin{center}
102
103\caption{Parameters used in ANUGA for the the submarine mass failure scenarios.}
104\begin{tabular}{|l|l|}\hline
105Model parameters  & Value \\ \hline
106friction & 0 \\ \hline
107minimum stored height & 0.1 m \\ \hline
108\end{tabular}
109
110\end{center}
111\end{table}
112
113
114\begin{table}
115\begin{center}
116
117\caption{Output directories for model simulations.}
118\begin{tabular}{|l|l|l|}\hline
119{\bf Region} & {\bf Slide}  & {\bf Location:}
120$\backslash {\rm inundation \backslash data \backslash new\_south\_wales
121\backslash }$ \\ \hline
122A & Bulli - Historical &  $ {\rm wollongong \_tsunami\_scenario\_2006 \backslash anuga
123\backslash outputs \backslash 20070213\_035110}$ \\ \hline
124A & Shovel - Historical & ${\rm wollongong \_tsunami\_scenario\_2006 \backslash anuga
125\backslash outputs \backslash
12620070213\_035146}$ \\ \hline
127A & Yacaaba & ${\rm wollongong \_tsunami\_scenario\_2006 \backslash anuga
128\backslash outputs \backslash
12920070213\_035302}$ \\ \hline
130B & Bulli &  ${\rm sydney \_tsunami\_scenario\_2006 \backslash anuga
131\backslash outputs \backslash
13220070213\_033012}$ \\ \hline
133B & Shovel & ${\rm sydney \_tsunami\_scenario\_2006 \backslash anuga
134\backslash outputs \backslash
13520070213\_031322}$ \\ \hline
136B & Yacaaba & $\rm{ sydney \_tsunami\_scenario\_2006 \backslash anuga
137\backslash outputs \backslash
13820070213\_033058}$ \\ \hline
139C & Bulli &  ${\rm newcastle \_tsunami\_scenario\_2006 \backslash anuga
140\backslash outputs \backslash
14120070219\_060722}$ \\ \hline
142C & Shovel &  ${\rm newcastle \_tsunami\_scenario\_2006 \backslash anuga
143\backslash outputs \backslash
14420070219\_060808}$ \\ \hline
145C & Yacaaba - Historical & ${\rm newcastle \_tsunami\_scenario\_2006 \backslash anuga
146\backslash outputs \backslash
14720070219\_060854}$ \\ \hline
148\end{tabular}
149
150\end{center}
151\end{table}
Note: See TracBrowser for help on using the repository browser.