1 | \begin{table}[h] |
---|
2 | \begin{center} |
---|
3 | \caption{Variables used in slide submarine mass failure model.} |
---|
4 | \begin{tabular}{|l|l|}\hline |
---|
5 | Variable name & Quantity \\ \hline |
---|
6 | $b$ & length \\ \hline |
---|
7 | $w$ & width \\ \hline |
---|
8 | $T$ & thickness \\ \hline |
---|
9 | $\gamma$ & density \\ \hline |
---|
10 | $d$ & water depth to centre of mass \\ \hline |
---|
11 | $\theta$ & bathymetric slope \\ \hline |
---|
12 | $\psi$ & angular orientaion \\ \hline |
---|
13 | $C_d$ & drag coefficient \\ \hline |
---|
14 | $C_m$ & added mass coefficient \\ \hline |
---|
15 | \end{tabular} |
---|
16 | \end{center} |
---|
17 | \end{table} |
---|
18 | |
---|
19 | The following relationships are used to derive parameters describing a slide |
---|
20 | submarine mass failure: |
---|
21 | |
---|
22 | characteristic time of motion |
---|
23 | |
---|
24 | $$t_0 = \frac{u_t}{a_0}$$ |
---|
25 | |
---|
26 | initial acceleration |
---|
27 | |
---|
28 | $$a_0 = g \sin \theta (\frac{\gamma-1}{\gamma + C_m}) (1 - \frac{\tan \psi}{\tan \theta})$$ |
---|
29 | |
---|
30 | theoretical terminal velocity |
---|
31 | |
---|
32 | $$u_t = \sqrt{gd} \sqrt{ \frac{b \sin \theta}{d} \frac{\pi (\gamma-1)}{2 C_d} |
---|
33 | (1 - \frac{\tan \psi}{\tan \theta}) }$$ |
---|
34 | |
---|
35 | characteristic distance of motion |
---|
36 | |
---|
37 | $$s_0 = \frac{u_t^2}{a_0}$$ |
---|
38 | |
---|
39 | From these parameters, further parameters are derived which describe the water displacement produced by the slide: |
---|
40 | |
---|
41 | |
---|
42 | characteristic tsunami wavelength |
---|
43 | |
---|
44 | $$\lambda_0 = t_0 \sqrt{gd}$$ |
---|
45 | |
---|
46 | characteristic two dimensional amplitude |
---|
47 | |
---|
48 | $$\eta_{0,2D} = s_0 (0.0574 - 0.0431 \sin \theta) (\frac{T}{b}) |
---|
49 | (\frac{b \sin \theta}{d})^{1.25} (1 - \exp(-2.2(\gamma-1) ) ) $$ |
---|
50 | |
---|
51 | characteristic three dimensional amplitude |
---|
52 | |
---|
53 | $$\eta_{0,3D} = \frac{\eta_{0,2D}}{1 + 15.5 \sqrt{ \frac{d}{b \sin \theta}}} $$ |
---|
54 | |
---|
55 | Assuming a double Gaussian relationship in the $x$ direction (tsunami length) and a $\sech^2$ |
---|
56 | relationship in the $y$ direction (tsunami width), the initial water displacement for a slide may be represented by |
---|
57 | |
---|
58 | $$\eta(x,y) = \eta_{0,3D} \frac{ (\exp(-(\frac{x-x_0}{\lambda_0})^2) - |
---|
59 | \kappa \exp(-(\frac{x-\delta x - x_0}{\lambda_0})^2))}{\cosh^2(\kappa\frac{y-y_0}{w+\lambda_0})}$$ |
---|