source: anuga_work/production/sydney_2006/report/smfmodel.tex @ 4282

Last change on this file since 4282 was 4105, checked in by sexton, 18 years ago

nsw report updates

File size: 1.9 KB
Line 
1\begin{table}[h]
2\begin{center}
3\caption{Variables used in slide submarine mass failure model.}
4\begin{tabular}{|l|l|}\hline
5Variable name & Quantity \\ \hline
6$b$ & length \\ \hline
7$w$ & width \\ \hline
8$T$ & thickness \\ \hline
9$\gamma$ & density \\ \hline
10$d$ & water depth to centre of mass \\ \hline
11$\theta$ & bathymetric slope \\ \hline
12$\psi$ & angular orientaion \\ \hline
13$C_d$ & drag coefficient \\ \hline
14$C_m$ & added mass coefficient \\ \hline
15\end{tabular}
16\end{center}
17\end{table}
18
19The following relationships are used to derive parameters describing a slide
20submarine mass failure:
21
22characteristic time of motion
23
24$$t_0 = \frac{u_t}{a_0}$$
25
26initial acceleration
27
28$$a_0 = g \sin \theta (\frac{\gamma-1}{\gamma + C_m}) (1 - \frac{\tan \psi}{\tan \theta})$$
29
30theoretical terminal velocity
31
32$$u_t = \sqrt{gd} \sqrt{ \frac{b \sin \theta}{d} \frac{\pi (\gamma-1)}{2 C_d}
33(1 - \frac{\tan \psi}{\tan \theta}) }$$
34
35characteristic distance of motion
36
37$$s_0 = \frac{u_t^2}{a_0}$$
38
39From these parameters, further parameters are derived which describe the water displacement produced by the slide:
40
41
42characteristic tsunami wavelength
43
44$$\lambda_0 = t_0 \sqrt{gd}$$
45
46characteristic two dimensional amplitude
47
48$$\eta_{0,2D} = s_0 (0.0574 - 0.0431 \sin \theta) (\frac{T}{b})
49(\frac{b \sin \theta}{d})^{1.25} (1 - \exp(-2.2(\gamma-1) ) ) $$
50
51characteristic three dimensional amplitude
52
53$$\eta_{0,3D} = \frac{\eta_{0,2D}}{1 + 15.5 \sqrt{ \frac{d}{b \sin \theta}}} $$
54
55Assuming a double Gaussian relationship in the $x$ direction (tsunami length) and a $\sech^2$ 
56relationship in the $y$ direction (tsunami width), the initial water displacement for a slide may be represented by
57
58$$\eta(x,y) = \eta_{0,3D} \frac{ (\exp(-(\frac{x-x_0}{\lambda_0})^2) - 
59\kappa \exp(-(\frac{x-\delta x - x_0}{\lambda_0})^2))}{\cosh^2(\kappa\frac{y-y_0}{w+\lambda_0})}$$
Note: See TracBrowser for help on using the repository browser.