source: anuga_work/production/wa/geraldton_2009/run_model.py @ 7855

Last change on this file since 7855 was 6839, checked in by kristy, 16 years ago

updated scripts to test theory of no wave

File size: 7.0 KB
Line 
1"""Run a tsunami inundation scenario for Busselton, WA, Australia.
2
3The scenario is defined by a triangular mesh created from project.polygon, the
4elevation data is compiled into a pts file through build_elevation.py and a
5simulated tsunami is generated through an sts file from build_boundary.py.
6
7Input: sts file (build_boundary.py for respective event)
8       pts file (build_elevation.py)
9       information from project file
10Outputs: sww file stored in project.output_run_time_dir
11The export_results_all.py and get_timeseries.py is reliant
12on the outputs of this script
13
14Ole Nielsen and Duncan Gray, GA - 2005, Jane Sexton, Nick Bartzis, GA - 2006
15Ole Nielsen, Jane Sexton and Kristy Van Putten - 2008
16"""
17
18#------------------------------------------------------------------------------
19# Import necessary modules
20#------------------------------------------------------------------------------
21
22# Standard modules
23import os
24import os.path
25import time
26from time import localtime, strftime, gmtime
27
28# Related major packages
29from Scientific.IO.NetCDF import NetCDFFile
30import Numeric as num
31
32from anuga.interface import create_domain_from_regions
33from anuga.interface import Transmissive_stage_zero_momentum_boundary
34from anuga.interface import Dirichlet_boundary
35from anuga.interface import Reflective_boundary
36from anuga.interface import Field_boundary
37from anuga.interface import create_sts_boundary
38from anuga.interface import csv2building_polygons
39from file_length import file_length
40from anuga.pmesh.mesh import importMeshFromFile
41from anuga.geospatial_data.geospatial_data import Geospatial_data
42
43
44from anuga.shallow_water.data_manager import start_screen_catcher
45from anuga.shallow_water.data_manager import copy_code_files
46from anuga.shallow_water.data_manager import urs2sts
47from anuga.utilities.polygon import read_polygon, Polygon_function
48
49# Application specific imports
50from setup_model import project
51import build_urs_boundary as bub
52
53#-------------------------------------------------------------------------------
54# Copy scripts to time stamped output directory and capture screen
55# output to file. Copy script must be before screen_catcher
56#-------------------------------------------------------------------------------
57
58copy_code_files(project.output_run, __file__, 
59                os.path.join(os.path.dirname(project.__file__),
60                             project.__name__+'.py'))
61start_screen_catcher(project.output_run, 0, 1)
62
63#-------------------------------------------------------------------------------
64# Create the computational domain based on overall clipping polygon with
65# a tagged boundary and interior regions defined in project.py along with
66# resolutions (maximal area of per triangle) for each polygon
67#-------------------------------------------------------------------------------
68
69print 'Create computational domain'
70
71# Create the STS file
72print 'project.mux_data_folder=%s' % project.mux_data_folder
73if not os.path.exists(project.event_sts + '.sts'):
74    bub.build_urs_boundary(project.mux_input_filename, project.event_sts)
75
76# Read in boundary from ordered sts file
77event_sts = create_sts_boundary(project.event_sts)
78
79# Reading the landward defined points, this incorporates the original clipping
80# polygon minus the 100m contour
81landward_boundary = read_polygon(project.landward_boundary)
82
83# Combine sts polyline with landward points
84bounding_polygon_sts = event_sts + landward_boundary
85
86# Number of boundary segments
87num_ocean_segments = len(event_sts) - 1
88# Number of landward_boundary points
89num_land_points = file_length(project.landward_boundary)
90
91# Boundary tags refer to project.landward_boundary
92# 4 points equals 5 segments start at N
93boundary_tags={'back': range(num_ocean_segments+1,
94                             num_ocean_segments+num_land_points),
95               'side': [num_ocean_segments,
96                        num_ocean_segments+num_land_points],
97               'ocean': range(num_ocean_segments)}
98
99# Build mesh and domain
100domain = create_domain_from_regions(bounding_polygon_sts,
101                                    boundary_tags=boundary_tags,
102                                    maximum_triangle_area=project.bounding_maxarea,
103                                    interior_regions=project.interior_regions,
104                                    mesh_filename=project.meshes,
105                                    use_cache=True,
106                                    verbose=True)
107
108m = importMeshFromFile(project.meshes)
109# load points from a points file
110m.add_points_and_segments(Geospatial_data(project.barrier))
111m.add_points_and_segments(Geospatial_data(project.barrier1))
112m.generate_mesh()
113m.export_mesh_file(project.meshes)
114
115print domain.statistics()
116
117domain.set_name(project.scenario_name)
118domain.set_datadir(project.output_run) 
119domain.set_minimum_storable_height(0.01)    # Don't store depth less than 1cm
120
121#-------------------------------------------------------------------------------
122# Setup initial conditions
123#-------------------------------------------------------------------------------
124
125print 'Setup initial conditions'
126
127# Set the initial stage in the offcoast region only
128if project.land_initial_conditions:
129    IC = Polygon_function(project.land_initial_conditions,
130                          default=project.tide,
131                          geo_reference=domain.geo_reference)
132else:
133    IC = 0
134domain.set_quantity('stage', IC, use_cache=True, verbose=True)
135domain.set_quantity('friction', project.friction) 
136domain.set_quantity('elevation', 
137                    filename=project.combined_elevation+'.pts',
138                    use_cache=True,
139                    verbose=True,
140                    alpha=project.alpha)
141
142#-------------------------------------------------------------------------------
143# Setup boundary conditions
144#-------------------------------------------------------------------------------
145
146print 'Set boundary - available tags:', domain.get_boundary_tags()
147
148Br = Reflective_boundary(domain)
149Bt = Transmissive_stage_zero_momentum_boundary(domain)
150Bd = Dirichlet_boundary([project.tide, 0, 0])
151Bno = Time_boundary(domain=domain, # Time dependent boundary
152                    f=lambda t: [0.0, 0.0, 0.0])
153Bf = Field_boundary(project.event_sts+'.sts',
154                    domain, mean_stage=project.tide,
155                    time_thinning=1,
156                    default_boundary=Dirichlet_boundary([0, 0, 0]),
157                    boundary_polygon=bounding_polygon_sts,                   
158                    use_cache=True,
159                    verbose=True)
160
161domain.set_boundary({'back': Br,
162                     'side': Bt,
163                     'ocean': Bno}) 
164
165#-------------------------------------------------------------------------------
166# Evolve system through time
167#-------------------------------------------------------------------------------
168
169t0 = time.time()
170for t in domain.evolve(yieldstep=project.yieldstep, 
171                       finaltime=project.finaltime,
172                       skip_initial_step=False): 
173    print domain.timestepping_statistics()
174    print domain.boundary_statistics(tags='ocean')
175
176print 'Simulation took %.2f seconds' % (time.time()-t0)
Note: See TracBrowser for help on using the repository browser.