source: anuga_work/production/wollongong_2006/run_gong_slide.py @ 4058

Last change on this file since 4058 was 4058, checked in by sexton, 18 years ago

updates for all slide scenarios

File size: 7.9 KB
Line 
1"""Script for running a tsunami inundation scenario for Wollongong, NSW, Australia.
2
3Source data such as elevation and boundary data is assumed to be available in
4directories specified by project.py
5The output sww file is stored in project.outputtimedir
6
7The scenario is defined by a triangular mesh created from project.polygon,
8the elevation data and a tsunami wave generated by s submarine mass failure.
9
10Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis, GA - 2006
11"""
12
13#-------------------------------------------------------------------------------
14# Import necessary modules
15#-------------------------------------------------------------------------------
16
17# Standard modules
18import os
19import time
20from shutil import copy
21from os.path import dirname, basename
22from os import mkdir, access, F_OK, sep
23import sys
24
25# Related major packages
26from anuga.shallow_water import Domain, Reflective_boundary, Dirichlet_boundary
27from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf, dem2pts
28from anuga.geospatial_data.geospatial_data import *
29from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, copy_code_files
30
31# Application specific imports
32import project_slide              # Definition of file names and polygons
33
34#-------------------------------------------------------------------------------
35# Copy scripts to time stamped output directory and capture screen
36# output to file
37#-------------------------------------------------------------------------------
38
39# creates copy of code in output dir
40copy_code_files(project.outputtimedir,__file__,dirname(project.__file__)+sep+ project.__name__+'.py' )
41myid = 0
42numprocs = 1
43start_screen_catcher(project.outputtimedir, myid, numprocs)
44
45print 'USER:    ', project.user
46
47#-------------------------------------------------------------------------------
48# Preparation of topographic data
49#
50# Convert ASC 2 DEM 2 PTS using source data and store result in source data
51#-------------------------------------------------------------------------------
52
53# filenames
54on_offshore10_dem_name = project_slide.on_offshore10_dem_name
55nsw_dem_name = project_slide.nsw_dem_name
56meshname = project_slide.meshname+'.msh'
57
58# creates DEM from asc data
59convert_dem_from_ascii2netcdf(on_offshore10_dem_name, use_cache=True, verbose=True)
60convert_dem_from_ascii2netcdf(nsw_dem_name, use_cache=True, verbose=True)
61
62#creates pts file for onshore DEM
63dem2pts(on_offshore10_dem_name, use_cache=True, verbose=True)
64dem2pts(nsw_dem_name,
65        easting_min=project_slide.eastingmin_nsw,
66        easting_max=project_slide.eastingmax_nsw,
67        northing_min=project_slide.northingmin_nsw,
68        northing_max= project_slide.northingmax_nsw,
69        use_cache=True, verbose=True)
70
71print 'create offshore'
72G11 = Geospatial_data(file_name = project_slide.offshore_dem_name1 + '.xya')
73G12 = Geospatial_data(file_name = project_slide.offshore_dem_name4 + '.xya')+\
74      Geospatial_data(file_name = project_slide.offshore_dem_name5 + '.xya')+\
75      Geospatial_data(file_name = project_slide.offshore_dem_name6 + '.xya')+\
76      Geospatial_data(file_name = project_slide.offshore_dem_name7 + '.xya')+\
77      Geospatial_data(file_name = project_slide.offshore_dem_name8 + '.xya')+\
78      Geospatial_data(file_name = project_slide.offshore_dem_name9 + '.xya')
79print 'create onshore'
80G2 = Geospatial_data(file_name = project_slide.on_offshore10_dem_name + '.pts')
81G4 = Geospatial_data(file_name = project_slide.nsw_dem_name + '.pts')
82print 'add'
83G = G11.clip(Geospatial(project_slide.poly_surveyclip)) +\
84    G12.clip(Geospatial_data(project_slide.polyAll)) +\
85    G2.clip(Geospatial_data(project_slide.poly_10mclip)) +\
86    (G4.clip(Geospatial_data(project_slide.polyAll))).clip_outside(Geospatial_data(project_slide.poly_surveyclip)).clip_outside(Geospatial_data(project_slide.poly_10mclip))
87print 'export points'
88G.export_points_file(project_slide.combined_dem_name + '.pts')
89#G.export_points_file(project_slide.combined_dem_name + '.xya')
90
91#----------------------------------------------------------------------------
92# Create the triangular mesh based on overall clipping polygon with a tagged
93# boundary and interior regions defined in project.py along with
94# resolutions (maximal area of per triangle) for each polygon
95#-------------------------------------------------------------------------------
96
97from anuga.pmesh.mesh_interface import create_mesh_from_regions
98remainder_res = 500000
99local_res = 25000
100gong_res = 5000
101coast_res = 500
102interior_regions = [[project.poly_gong1, local_res],
103                    [project.poly_gong2, gong_res],
104                    [project.poly_gong3, coast_res]]
105
106from caching import cache
107_ = cache(create_mesh_from_regions,
108          project.polyAll,
109           {'boundary_tags': {'e0': [0], 'e1': [1], 'e2': [2],
110                              'e3': [3], 'e4':[4], 'e5': [5],
111                              'e6': [6]},
112           'maximum_triangle_area': remainder_res,
113           'filename': meshname,
114           'interior_regions': interior_regions},
115          verbose = True, evaluate=False)
116print 'created mesh'
117
118#-------------------------------------------------------------------------------                                 
119# Setup computational domain
120#-------------------------------------------------------------------------------                                 
121domain = Domain(meshname, use_cache = True, verbose = True)
122
123print 'Number of triangles = ', len(domain)
124print 'The extent is ', domain.get_extent()
125print domain.statistics()
126
127domain.set_name(project.basename)
128domain.set_datadir(project.outputtimedir)
129domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
130domain.set_minimum_storable_height(0.01)
131
132#-------------------------------------------------------------------------------                                 
133# Setup initial conditions
134#-------------------------------------------------------------------------------
135
136tide = 0.0
137domain.set_quantity('stage', tide)
138domain.set_quantity('friction', 0.0) 
139domain.set_quantity('elevation', 
140                    filename = project.combined_dem_name + '.pts',
141                    use_cache = True,
142                    verbose = True,
143                    alpha = 0.1
144                    )
145
146#-------------------------------------------------------------------------------
147# Set up scenario (tsunami_source is a callable object used with set_quantity)
148#-------------------------------------------------------------------------------
149from smf import slide_tsunami
150
151tsunami_source = slide_tsunami(length=30000.0,
152                               depth=400.0,
153                               slope=6.0,
154                               thickness=176.0, 
155                               radius=3330,
156                               dphi=0.23,
157                               x0=project.slump_origin[0], 
158                               y0=project.slump_origin[1], 
159                               alpha=0.0, 
160                               domain=domain)
161
162#-------------------------------------------------------------------------------                                 
163# Setup boundary conditions
164#-------------------------------------------------------------------------------
165print 'Available boundary tags', domain.get_boundary_tags()
166
167Br = Reflective_boundary(domain)
168Bd = Dirichlet_boundary([tide,0,0])
169
170domain.set_boundary( {'e0': Bd,  'e1': Bd, 'e2': Bd, 'e3': Bd, 'e4': Bd,
171                      'e5': Bd,  'e6': Bd} )
172
173
174#-------------------------------------------------------------------------------                                 
175# Evolve system through time
176#-------------------------------------------------------------------------------
177import time
178t0 = time.time()
179
180for t in domain.evolve(yieldstep = 30, finaltime = 480): 
181    domain.write_time()
182    domain.write_boundary_statistics(tags = 'e14')
183    stagestep = domain.get_quantity('stage') 
184
185    if allclose(t, 30):
186        slide = Quantity(domain)
187        slide.set_values(tsunami_source)
188        domain.set_quantity('stage', slide + stagestep)
189   
190print 'That took %.2f seconds' %(time.time()-t0)
191
192print 'finished'
Note: See TracBrowser for help on using the repository browser.