source: anuga_work/production/wollongong_2006/run_gong_slide.py @ 4314

Last change on this file since 4314 was 4314, checked in by sexton, 17 years ago

update slide modelling parameters

File size: 8.2 KB
Line 
1"""Script for running a tsunami inundation scenario for Wollongong, NSW, Australia.
2
3Source data such as elevation and boundary data is assumed to be available in
4directories specified by project_slide.py
5The output sww file is stored in project_slide.outputtimedir
6
7The scenario is defined by a triangular mesh created from project.polygon,
8the elevation data and a tsunami wave generated by s submarine mass failure.
9
10Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis, GA - 2006
11"""
12
13#-------------------------------------------------------------------------------
14# Import necessary modules
15#-------------------------------------------------------------------------------
16
17# Standard modules
18import os
19import time
20from shutil import copy
21from os.path import dirname, basename
22from os import mkdir, access, F_OK, sep
23import sys
24
25# Related major packages
26from anuga.shallow_water import Domain, Reflective_boundary, Dirichlet_boundary
27from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf, dem2pts
28from anuga.geospatial_data.geospatial_data import *
29from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, copy_code_files
30
31# Application specific imports
32import project_slide              # Definition of file names and polygons
33
34#-------------------------------------------------------------------------------
35# Copy scripts to time stamped output directory and capture screen
36# output to file
37#-------------------------------------------------------------------------------
38
39# creates copy of code in output dir
40copy_code_files(project_slide.outputtimedir,__file__,dirname(project_slide.__file__)+sep+ project_slide.__name__+'.py' )
41myid = 0
42numprocs = 1
43start_screen_catcher(project_slide.outputtimedir, myid, numprocs)
44
45print 'USER:    ', project_slide.user
46
47#-------------------------------------------------------------------------------
48# Preparation of topographic data
49#
50# Convert ASC 2 DEM 2 PTS using source data and store result in source data
51#-------------------------------------------------------------------------------
52
53# filenames
54on_offshore10_dem_name = project_slide.on_offshore10_dem_name
55nsw_dem_name = project_slide.nsw_dem_name
56meshname = project_slide.meshname+'.msh'
57
58# creates DEM from asc data
59convert_dem_from_ascii2netcdf(on_offshore10_dem_name, use_cache=True, verbose=True)
60convert_dem_from_ascii2netcdf(nsw_dem_name, use_cache=True, verbose=True)
61
62#creates pts file for onshore DEM
63dem2pts(on_offshore10_dem_name, use_cache=True, verbose=True)
64dem2pts(nsw_dem_name,
65        easting_min=project_slide.eastingmin_nsw,
66        easting_max=project_slide.eastingmax_nsw,
67        northing_min=project_slide.northingmin_nsw,
68        northing_max= project_slide.northingmax_nsw,
69        use_cache=True, verbose=True)
70
71print 'create offshore'
72G11 = Geospatial_data(file_name = project_slide.offshore_dem_name1 + '.xya')
73G12 = Geospatial_data(file_name = project_slide.offshore_dem_name4 + '.xya')+\
74      Geospatial_data(file_name = project_slide.offshore_dem_name5 + '.xya')+\
75      Geospatial_data(file_name = project_slide.offshore_dem_name6 + '.xya')+\
76      Geospatial_data(file_name = project_slide.offshore_dem_name7 + '.xya')+\
77      Geospatial_data(file_name = project_slide.offshore_dem_name8 + '.xya')+\
78      Geospatial_data(file_name = project_slide.offshore_dem_name9 + '.xya')
79print 'create onshore'
80G2 = Geospatial_data(file_name = project_slide.on_offshore10_dem_name + '.pts')
81G4 = Geospatial_data(file_name = project_slide.nsw_dem_name + '.pts')
82print 'add'
83G = G11.clip(Geospatial_data(project_slide.poly_surveyclip)) +\
84    G12.clip(Geospatial_data(project_slide.polyAll)) +\
85    G2.clip(Geospatial_data(project_slide.poly_10mclip)) +\
86    (G4.clip(Geospatial_data(project_slide.polyAll))).clip_outside(Geospatial_data(project_slide.poly_surveyclip)).clip_outside(Geospatial_data(project_slide.poly_10mclip))
87print 'export points'
88G.export_points_file(project_slide.combined_dem_name + '.pts')
89#G.export_points_file(project_slide.combined_dem_name + '.xya')
90
91#----------------------------------------------------------------------------
92# Create the triangular mesh based on overall clipping polygon with a tagged
93# boundary and interior regions defined in project.py along with
94# resolutions (maximal area of per triangle) for each polygon
95#-------------------------------------------------------------------------------
96
97from anuga.pmesh.mesh_interface import create_mesh_from_regions
98remainder_res = 100000
99local_res = 25000
100gong_res = 500
101interior_regions = [[project_slide.poly_local, local_res],
102                    [project_slide.poly_gong, gong_res],
103                    [project_slide.poly_southgong, gong_res]]
104
105from caching import cache
106_ = cache(create_mesh_from_regions,
107          project_slide.polyAll,
108           {'boundary_tags': {'e0': [0], 'e1': [1], 'e2': [2],
109                              'e3': [3], 'e4':[4]},
110           'maximum_triangle_area': remainder_res,
111           'filename': meshname,
112           'interior_regions': interior_regions},
113          verbose = True, evaluate=False)
114print 'created mesh'
115
116#-------------------------------------------------------------------------------                                 
117# Setup computational domain
118#-------------------------------------------------------------------------------                                 
119domain = Domain(meshname, use_cache = True, verbose = True)
120
121print 'Number of triangles = ', len(domain)
122print 'The extent is ', domain.get_extent()
123print domain.statistics()
124
125domain.set_name(project_slide.basename)
126domain.set_datadir(project_slide.outputtimedir)
127domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
128domain.set_minimum_storable_height(0.01)
129
130#-------------------------------------------------------------------------------                                 
131# Setup initial conditions
132#-------------------------------------------------------------------------------
133
134tide = 0.0
135domain.set_quantity('stage', tide)
136domain.set_quantity('friction', 0.0) 
137domain.set_quantity('elevation', 
138                    filename = project_slide.combined_dem_name + '.pts',
139                    use_cache = True,
140                    verbose = True,
141                    alpha = 0.1
142                    )
143
144#-------------------------------------------------------------------------------
145# Set up scenario (tsunami_source is a callable object used with set_quantity)
146#-------------------------------------------------------------------------------
147from smf import slide_tsunami
148
149tsunami_source = slide_tsunami(length=project_slide.birubi_length,
150                               width=project_slide.birubi_width,
151                               depth=project_slide.birubi_depth,
152                               slope=project_slide.birubi_slope,
153                               thickness=project_slide.birubi_thickness, 
154                               x0=project_slide.slide_origin_birubi_a[0], 
155                               y0=project_slide.slide_origin_birubi_a[1], 
156                               alpha=project_slide.birubi_alpha, 
157                               domain=domain)
158
159#-------------------------------------------------------------------------------                                 
160# Setup boundary conditions
161#-------------------------------------------------------------------------------
162print 'Available boundary tags', domain.get_boundary_tags()
163
164Br = Reflective_boundary(domain)
165Bd = Dirichlet_boundary([tide,0,0])
166
167domain.set_boundary( {'e0': Bd,  'e1': Bd, 'e2': Bd, 'e3': Bd, 'e4': Bd} )
168
169
170#-------------------------------------------------------------------------------                                 
171# Evolve system through time
172#-------------------------------------------------------------------------------
173import time
174t0 = time.time()
175from Numeric import allclose
176from anuga.abstract_2d_finite_volumes.quantity import Quantity
177
178for t in domain.evolve(yieldstep = 30, finaltime = 5000): 
179    domain.write_time()
180    domain.write_boundary_statistics(tags = 'e14')
181    stagestep = domain.get_quantity('stage') 
182
183    if allclose(t, 30):
184        slide = Quantity(domain)
185        slide.set_values(tsunami_source)
186        domain.set_quantity('stage', slide + stagestep)
187   
188print 'That took %.2f seconds' %(time.time()-t0)
189
190print 'finished'
Note: See TracBrowser for help on using the repository browser.