1 | """Script for running a tsunami inundation scenario for Port Kembla, NSW, Australia. |
---|
2 | |
---|
3 | Source data such as elevation and boundary data is assumed to be available in |
---|
4 | directories specified by project_kembla.py |
---|
5 | |
---|
6 | The scenario is defined by a triangular mesh created from project_kembla.polygon, |
---|
7 | the elevation data and an input wave. |
---|
8 | |
---|
9 | Ole Nielsen and Duncan Gray, GA - 2005 and Nick Bartzis and Jane Sexton, GA - 2006 |
---|
10 | """ |
---|
11 | |
---|
12 | #------------------------------------------------------------------------------- |
---|
13 | # Import necessary modules |
---|
14 | #------------------------------------------------------------------------------- |
---|
15 | |
---|
16 | # Standard modules |
---|
17 | import os |
---|
18 | import time |
---|
19 | from shutil import copy |
---|
20 | from os.path import dirname, basename |
---|
21 | from os import mkdir, access, F_OK, sep |
---|
22 | import sys |
---|
23 | |
---|
24 | # Related major packages |
---|
25 | from anuga.shallow_water import Domain, Reflective_boundary, Dirichlet_boundary, Time_boundary |
---|
26 | from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf, dem2pts |
---|
27 | from anuga.geospatial_data.geospatial_data import * |
---|
28 | from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, copy_code_files |
---|
29 | |
---|
30 | # Application specific imports |
---|
31 | import project_kembla # Definition of file names and polygons |
---|
32 | |
---|
33 | #------------------------------------------------------------------------------- |
---|
34 | # Preparation of topographic data |
---|
35 | # |
---|
36 | # Convert ASC 2 DEM 2 PTS using source data and store result in source data |
---|
37 | #------------------------------------------------------------------------------- |
---|
38 | |
---|
39 | # filenames |
---|
40 | dem_name = project_kembla.dem_name |
---|
41 | meshname = project_kembla.meshname+'.msh' |
---|
42 | |
---|
43 | ### creates DEM from asc data |
---|
44 | ##convert_dem_from_ascii2netcdf(dem_name, use_cache=True, verbose=True) |
---|
45 | ## |
---|
46 | ###creates pts file for onshore DEM |
---|
47 | ##dem2pts(dem_name, use_cache=True, verbose=True) |
---|
48 | ## |
---|
49 | ##print 'create onshore' |
---|
50 | ##G = Geospatial_data(file_name = project_kembla.dem_name + '.pts') |
---|
51 | ## |
---|
52 | ##print 'export points' |
---|
53 | ##G.export_points_file(project_kembla.combined_dem_name + '.pts') |
---|
54 | #G.export_points_file(project_kembla.combined_dem_name + '.xya') |
---|
55 | |
---|
56 | #---------------------------------------------------------------------------- |
---|
57 | # Create the triangular mesh based on overall clipping polygon with a tagged |
---|
58 | # boundary and interior regions defined in project.py along with |
---|
59 | # resolutions (maximal area of per triangle) for each polygon |
---|
60 | #------------------------------------------------------------------------------- |
---|
61 | |
---|
62 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
63 | remainder_res = 100000 |
---|
64 | bay_res = 5000 |
---|
65 | interior_regions = [[project_kembla.poly_bay, bay_res]] |
---|
66 | |
---|
67 | from caching import cache |
---|
68 | _ = cache(create_mesh_from_regions, |
---|
69 | project_kembla.polyAll, |
---|
70 | {'boundary_tags': {'top': [0], 'right': [1], 'bottom': [2], |
---|
71 | 'left': [3]}, |
---|
72 | 'maximum_triangle_area': remainder_res, |
---|
73 | 'filename': meshname, |
---|
74 | 'interior_regions': interior_regions}, |
---|
75 | verbose = True, evaluate=False) |
---|
76 | print 'created mesh' |
---|
77 | |
---|
78 | #------------------------------------------------------------------------------- |
---|
79 | # Setup computational domain |
---|
80 | #------------------------------------------------------------------------------- |
---|
81 | domain = Domain(meshname, use_cache = True, verbose = True) |
---|
82 | |
---|
83 | print 'Number of triangles = ', len(domain) |
---|
84 | print 'The extent is ', domain.get_extent() |
---|
85 | print domain.statistics() |
---|
86 | |
---|
87 | domain.set_name(project_kembla.basename) |
---|
88 | domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) |
---|
89 | domain.set_minimum_storable_height(0.01) |
---|
90 | |
---|
91 | #------------------------------------------------------------------------------- |
---|
92 | # Setup initial conditions |
---|
93 | #------------------------------------------------------------------------------- |
---|
94 | |
---|
95 | tide = 0.0 |
---|
96 | domain.set_quantity('stage', tide) |
---|
97 | domain.set_quantity('friction', 0.0) |
---|
98 | domain.set_quantity('elevation', |
---|
99 | filename = project_kembla.combined_dem_name + '.pts', |
---|
100 | use_cache = True, |
---|
101 | verbose = True, |
---|
102 | alpha = 0.1 |
---|
103 | ) |
---|
104 | |
---|
105 | #------------------------------------------------------------------------------- |
---|
106 | # Setup boundary conditions |
---|
107 | #------------------------------------------------------------------------------- |
---|
108 | print 'Available boundary tags', domain.get_boundary_tags() |
---|
109 | |
---|
110 | Br = Reflective_boundary(domain) |
---|
111 | Bd = Dirichlet_boundary([tide,0,0]) |
---|
112 | # 10 min square wave starting at 1 min, 6m high |
---|
113 | Bw = Time_boundary(domain=domain, |
---|
114 | f=lambda t: [(60<t<660)*6, 0, 0]) |
---|
115 | |
---|
116 | domain.set_boundary( {'top': Bd,'right': Bw, 'bottom': Bd, 'left': Bd} ) |
---|
117 | |
---|
118 | |
---|
119 | #------------------------------------------------------------------------------- |
---|
120 | # Evolve system through time |
---|
121 | #------------------------------------------------------------------------------- |
---|
122 | import time |
---|
123 | t0 = time.time() |
---|
124 | from Numeric import allclose |
---|
125 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
126 | |
---|
127 | for t in domain.evolve(yieldstep = 10, finaltime = 1000): |
---|
128 | domain.write_time() |
---|
129 | domain.write_boundary_statistics(tags = 'right') |
---|
130 | stagestep = domain.get_quantity('stage') |
---|
131 | |
---|
132 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
133 | |
---|
134 | print 'finished' |
---|