[5721] | 1 | """Simple water flow example using ANUGA |
---|
| 2 | |
---|
| 3 | Water flowing down a channel with more complex topography |
---|
| 4 | """ |
---|
| 5 | |
---|
| 6 | #------------------------------------------------------------------------------ |
---|
| 7 | # Import necessary modules |
---|
| 8 | #------------------------------------------------------------------------------ |
---|
| 9 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
| 10 | from anuga.shallow_water import Domain |
---|
| 11 | from anuga.shallow_water import Reflective_boundary |
---|
| 12 | from anuga.shallow_water import Dirichlet_boundary |
---|
| 13 | from anuga.shallow_water import Time_boundary |
---|
| 14 | |
---|
| 15 | from math import cos, sin, pi, sqrt |
---|
| 16 | |
---|
| 17 | #------------------------------------------------------------------------------ |
---|
| 18 | # Setup computational domain |
---|
| 19 | #------------------------------------------------------------------------------ |
---|
| 20 | length = 40. |
---|
| 21 | width = 5. |
---|
| 22 | #dx = dy = .05 # Resolution: Length of subdivisions on both axes |
---|
| 23 | dx = dy = .5 # Resolution: Length of subdivisions on both axes |
---|
| 24 | |
---|
| 25 | points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), |
---|
| 26 | len1=length, len2=width) |
---|
| 27 | domain = Domain(points, vertices, boundary) |
---|
| 28 | domain.set_name('channel3') # Output name |
---|
| 29 | print domain.statistics() |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | #------------------------------------------------------------------------------ |
---|
| 33 | # Setup initial conditions |
---|
| 34 | #------------------------------------------------------------------------------ |
---|
| 35 | def topography(x,y): |
---|
| 36 | """Complex topography defined by a function of vectors x and y |
---|
| 37 | """ |
---|
| 38 | |
---|
| 39 | # Geometric parameters |
---|
| 40 | gradient = 0.02 |
---|
| 41 | weir_height = 0.5 |
---|
| 42 | obstruction_height = 0.0 |
---|
| 43 | pole_height = 0.0 |
---|
| 44 | |
---|
| 45 | # Upward slope |
---|
| 46 | z = gradient*x |
---|
| 47 | |
---|
| 48 | N = len(x) |
---|
| 49 | for i in range(N): |
---|
| 50 | |
---|
| 51 | # Weir |
---|
| 52 | if 10 < x[i] < 12: |
---|
| 53 | z[i] += weir_height |
---|
| 54 | |
---|
| 55 | # Obstruction |
---|
| 56 | if 27 < x[i] < 29 and y[i] > 3: |
---|
| 57 | z[i] += obstruction_height |
---|
| 58 | |
---|
| 59 | # Pole |
---|
| 60 | if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2: |
---|
| 61 | z[i] += pole_height |
---|
| 62 | |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | return z |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
| 71 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
| 72 | domain.set_quantity('stage', |
---|
| 73 | expression='elevation') # Dry initial condition |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | #------------------------------------------------------------------------------ |
---|
| 77 | # Setup boundary conditions |
---|
| 78 | #------------------------------------------------------------------------------ |
---|
| 79 | Bi = Dirichlet_boundary([1.0, 0, 0]) # Inflow |
---|
| 80 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
| 81 | Bo = Dirichlet_boundary([-1, 0, 0]) # Outflow |
---|
| 82 | |
---|
| 83 | def wave(t): |
---|
| 84 | |
---|
| 85 | A = 1.5 # Amplitude [m] (Wave height) |
---|
| 86 | T = 30 # Wave period [s] |
---|
| 87 | |
---|
| 88 | if t < 120: |
---|
| 89 | return [A*sin(2*pi*t/T) + 1, 0, 0] |
---|
| 90 | else: |
---|
| 91 | return [0.0, 0, 0] |
---|
| 92 | |
---|
| 93 | Bt = Time_boundary(domain, f=wave) |
---|
| 94 | |
---|
| 95 | domain.set_boundary({'left': Bt, 'right': Bo, 'top': Br, 'bottom': Br}) |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | #------------------------------------------------------------------------------ |
---|
| 100 | # Evolve system through time |
---|
| 101 | #------------------------------------------------------------------------------ |
---|
| 102 | |
---|
| 103 | washed_away = False |
---|
| 104 | |
---|
| 105 | for t in domain.evolve(yieldstep = 0.1, finaltime = 120.0): |
---|
| 106 | print domain.timestepping_statistics() |
---|
| 107 | |
---|
| 108 | S = domain.get_quantity('stage').get_values(interpolation_points=[[40, 2.5]]) |
---|
| 109 | E = domain.get_quantity('elevation').get_values(interpolation_points=[[40, 2.5]]) |
---|
| 110 | |
---|
| 111 | depth = S-E |
---|
| 112 | |
---|
| 113 | print '-------------' |
---|
| 114 | print 'depth', depth |
---|
| 115 | print '-------------' |
---|
| 116 | |
---|
| 117 | #print 'elevation', E |
---|
| 118 | |
---|
| 119 | if depth > 1.63/3: |
---|
| 120 | |
---|
| 121 | print 'Water level will sweep Fiona away', |
---|
| 122 | if washed_away is True: |
---|
| 123 | print ' - AGAIN!' |
---|
| 124 | else: |
---|
| 125 | print |
---|
| 126 | |
---|
| 127 | if washed_away is False: |
---|
| 128 | |
---|
| 129 | washaway_time = t |
---|
| 130 | print 'Getting momentum' |
---|
| 131 | uh = domain.get_quantity('xmomentum').get_values(interpolation_points=[[40, 2.5]]) |
---|
| 132 | vh = domain.get_quantity('ymomentum').get_values(interpolation_points=[[40, 2.5]]) |
---|
| 133 | |
---|
| 134 | print 'Computing velocity' |
---|
| 135 | u = uh/depth |
---|
| 136 | v = vh/depth |
---|
| 137 | print 'velocity: (%f, %f' %(u,v) |
---|
| 138 | washaway_velocity = sqrt(u*u + v*v) |
---|
| 139 | print 'done' |
---|
| 140 | |
---|
| 141 | washed_away = True |
---|
| 142 | #raw_input('press key') |
---|
| 143 | |
---|
| 144 | if washed_away is True: |
---|
| 145 | print 'Fiona got swept away at time = %.1f sec with a velocity of %.2f m/s'\ |
---|
| 146 | %(washaway_time, washaway_velocity) |
---|
| 147 | |
---|